Kaiser Bottom Fish OnlineFree trialNew StuffHow It WorksContact UsTerms of UseHome
Specializing in Canadian Stocks
SearchAdvanced Search
Welcome Guest User   (more...)
Home / Education
Education
 

Sheahan Diamond Literature Technical Reference Compilation 2021


The Sheahan Diamond Literature Reference Compilation
The Sheahan Diamond Literature Reference Compilation is compiled by Patricia Sheahan who publishes on a monthly basis a list of new scientific articles related to diamonds as well as media coverage and corporate announcementscalled the Sheahan Diamond Literature Service that is distributed as a free pdf to a list of followers. Pat has kindly agreed to allow her work to be made available as an online digital resource at Kaiser Research Online so that a broader community interested in diamonds and related geology can benefit. The references are for personal use information purposes only; when available a link is provided to an online location where the full article can be accessed or purchased directly. Reproduction of this compilation in part or in whole without permission from the Sheahan Diamond Literature Service is strictly prohibited. Return to Diamond Resource Center
Sheahan Diamond Literature Reference Compilation - Scientific Articles by Author for all years
A-An Ao+ B-Bd Be-Bk Bl-Bq Br+ C-Cg Ch-Ck Cl+ D-Dd De-Dn Do+ E F-Fn Fo+ G-Gh Gi-Gq Gr+ H-Hd He-Hn Ho+ I J K-Kg Kh-Kn Ko-Kq Kr+ L-Lh
Li+ M-Maq Mar-Mc Md-Mn Mo+ N O P-Pd Pe-Pn Po+ Q R-Rh Ri-Rn Ro+ S-Sd Se-Sh Si-Sm Sn-Ss St+ T-Th Ti+ U V W-Wg Wh+ X Y Z
Sheahan Diamond Literature Reference Compilation - Media/Corporate References by Name for all years
A B C D-Diam Diamonds Diamr+ E F G H I J K L M N O P Q R S T U V W X Y Z
Tips for Users
Posted/Published Reference CodesThe SDLRC provides 3 types of references identified in the reference code. DS for scientific article, DM for a media article, and DC for a corporate announcement. Consider DS0512-0001. The DS stands for "diamond scientific". 05 stands for 2005, the year the reference was posted. 12 represents the month the reference was posted. For all years prior to 2015 the default month is 12. -0001 is the reference's identifier and it does not mean anything. The number below the refence code, ie 2015, is the year the article was published. Note that the posted year may sometimes be later than the published year.
Sort OrderReferences are sorted by the "author" name and when the reference was posted to the compilation.
Most RecentIf the reference code is highlighted yellow, the reference was made available through the most recent monthly compilation of new literature. Use this to check out new references. When new references are posted, we make it our priority to track down an online link and obtain an abstract. With regard to older references, tracking down an abstract and an online link is a work in progress.
Link to external location of article: If the title has a link, it means we have found a location online where you can either retrieve the full article free, or purchase access to it. The Sheahan Diamond Literature Service is not a technical article procurement service; if you want a restricted article, you must deal directly with the vendor who controls the copyright to the article.
Searching this page for a specific term or authorIn your Firefox browser click Edit in the menu bar and then Find. In the Find box that shows up at the bottom of the web page enter your search term. Firefox will highlight all occurrences. This is particularly helpful when the author you are seeking was not the lead author by whom the compilation is sorted.
Sending or sharing a referenceThe left column (Posted/Published) has an embedded hyperlink for each reference. In Firefox, if you right click on it, you can obtain the link url for that reference's location within the page, which you can copy and paste into an email or any other document. You can also use the "share this link" option to tweet, facebook etc the link.
Monthly Sheahan Diamond Newsletters for 2021
January 2021 May 2021 September 2021
February 2021 June 2021 October 2021
March 2021 July 2021 November 2021
April 2021 August 2021 December 2021
2021 Technical Reference Compilation
Posted/
Published
AuthorTitleSourceRegionKeywords
DS202108-1266
2021
Abersteiner, A., Kamenetsky, V.S., Golovin, A., Goemann, K., Ehrig, K.Dissolution of mantle orthopyroxene in kimberlitic melts: petrographic, geochemical and melt inclusion constraints from an orthopyroxenite xenolith from the Udachnaya-East kimberlite ( Siberian Craton, Russia).Lithos, Vol. 398-399, 17p. PdfRussia, Siberiadeposit - Udachnaya-East

Abstract: Reconstructing the original composition of kimberlite melts in the mantle and delineating the processes that modify them during magmatic ascent and emplacement in the crust remains a significant challenge in kimberlite petrology. One of the most significant processes commonly cited to drive initial kimberlite melts towards more Si-Mg-rich compositions and decrease the solubility of CO2 is the assimilation of mantle orthopyroxene. However, there is limited direct evidence to show the types of reactions that may occur between mantle orthopyroxene and the host kimberlite melt. To provide new constraints on the interaction between orthopyroxene and parental kimberlite melts, we examined a fresh (i.e. unmodified by secondary/post-magmatic alteration) orthopyroxenite xenolith, which was recovered from the serpentine-free units of the Udachnaya-East kimberlite (Siberian Craton, Russia). This xenolith is composed largely of orthopyroxene (~ 90%), along with lesser olivine and clinopyroxene and rare aluminous magnesian chromite. We can show that this xenolith was invaded by the host kimberlite melt along grain interstices and fractures, where it partially reacted with orthopyroxene along the grain boundaries and replaced it with aggregates of compositionally distinct clinopyroxene, olivine and phlogopite, along with subordinate Fe-Cr-Mg spinel, Fesingle bondNi sulphides and djerfisherite (K6(Fe,Ni,Cu)25S26Cl). Primary melt inclusions in clinopyroxene replacing xenolith-forming orthopyroxene, as well as secondary melt inclusion trails in xenolith orthopyroxene, clinopyroxene and olivine are composed of similar daughter mineral assemblages that consist largely of: Nasingle bondK chlorides, along with varying proportions of phlogopite, Fe-Cu-Ni sulphides, djerfisherite, rasvumite (KFe2S3), Cr-Fe-Mg spinel, nepheline and apatite, and rare rutile, sodalite, barite, olivine, Ca-K-Na carbonates and Nasingle bondK sulphates. The melt entrapped by these inclusions likely represent the hybrid products produced by the invading kimberlite melt reacting with orthopyroxene in the xenolith. The mechanism that could explain the partial replacement of orthopyroxene in this xenolith by clinopyroxene, olivine and phlogopite could be attributed to the following reaction: Orthopyroxene + Carbonatitic (melt) ? Olivine + Clinopyroxene + Phlogopite + CO2. This reaction is supported by theoretical and experimental studies that advocate the dissolution of mantle orthopyroxene within an initially silica-poor and carbonate-rich kimberlite melt. The mineral assemblages replacing orthopyroxene in the xenolith, together with hosted melt inclusions, suggests that the kimberlitic melt prior to reaction with orthopyroxene was likely carbonate-rich and Na-K-Cl-S bearing. The paucity of carbonate in the reaction zones around orthopyroxene and in melt inclusions in clinopyroxene replacing xenolith-forming orthopyroxene and xenolith minerals (orthopyroxene, clinopyroxene and olivine) is attributed to the consumption of carbonates and subsequent exsolution of CO2 by the proposed decarbonation reaction. Concluding, we propose that this orthopyroxenite xenolith provides a rare example of the types of reactions that can occur between mantle orthopyroxene and the host kimberlite melt. The preservation of this xenolith and zones around orthopyroxene present new insights into the composition and evolution of parental kimberlite melts and CO2 exsolution.
DS202104-0563
2020
Afanasiev, V.P., Pohilenko, N.P., Kuligin, S.S., Samdanov, D.A.On the prospects of diamond content of the southern side of the Vilyui syneclise. ( Lena River)Geology of Ore Deposits, Vol. 62, 6, pp. 535-541.RussiaIndicator minerals

Abstract: The paper describes indicator minerals of kimberlites found on the southern side of the Vilyui syneclise in the Markha River basin, a tributary of the Lena River. It is shown that indicator minerals-pyrope and picroilmenite-derive from Middle Paleozoic kimberlites, very likely diamondiferous. Methods are proposed for further studies on determining the prospects for the diamond content of the southern side of the Vilyui syneclise and the northern slope of the Aldan anteclise.
DS202106-0920
2021
Agasheva, E.Magmatic material in sandstone shows prospects for new diamond deposits within the northern east European platform.Minerals, Vol. 11, 339. doi.org/10.3390/min11040339 27p. PdfRussia, Arkhangelskdeposit - KL-01

Abstract: A detailed study of sandstones recovered from the upper part of the recently discovered KL-01 magmatic pipe in the southern part of the Arkhangelsk diamondiferous province (ADP), containing magmatic material and rare kimberlite indicator minerals, is presented in this paper. Results are compared to the composition of crater samples of the highly diamondiferous Vladimir Grib kimberlite pipe and several poorly to non-diamondiferous ADP pipes. To identify the type of magmatic material admixture, a model of binary mixing between country Vendian sandstones and typical ADP magmatic rocks based on correlations of La/Yb and Zr/Nb ratios and Ni contents is proposed. The modeling results show that the type of magmatic component in the KL-01 samples can be identified as kimberlite, with a maximum admixture of 20 vol.%. Kimberlite indicator mineral geochemistry did not exclude the interpretation that the composition, structure, thermal state and metasomatic enrichment of the lithospheric mantle sampled by the KL-01 pipe were suitable for the formation and preservation of diamonds. The lower boundary of the sampled lithospheric mantle could be in the depth range of 175-190 km, with a diamond window width of 55-70 km. Thus, the sandstones could represent the upper level of the crater of a new kimberlite pipe.
DS202108-1267
2021
Agasheva, E.V., Kolesnichenko, M.V., Malygina, E.V., Agashev, A.M., Zedgenizov, D.A.Origin of water in mantle eclogites from the V. Grib kimberlite pipe, NW Russia.Lithosphere, Vol. 2021, 7866657, 18p. PdfRussia, Arkangelskdeposit - Grib

Abstract: The water content in the garnet and clinopyroxene in the mantle eclogites from the V. Grib kimberlite pipe (Arkhangelsk Diamondiferous Province, NW Russia) was analysed using Fourier transform infrared spectrometry. The results show that all clinopyroxene grains contained structural water at concentrations of 39 to 247?ppm, whereas two garnet samples contained detectable water at concentrations of 211 and 337?ppm. The low-MgO eclogites with oceanic gabbro precursors contained significantly higher water concentrations in the omphacites (70-247?ppm) and whole rock (35-224?ppm) compared to those with oceanic basalt protoliths (49-73?ppm and 20-36?ppm, respectively). The incorporation of water into the clinopyroxene may be associated with vacancies at the M2 site, Al in the tetrahedral position, and the elements that filled the M2 site (mostly Na and Ca). The highest water content in the omphacite was detected in a nonmetasomatised sample and was assumed to represent residual water that survived during subduction. Other eclogite samples showed signs of modal and/or cryptic metasomatism and contained less water in the omphacites compared to the nonmetasomatised sample. The water content was heterogeneous within the eclogite section of the sampled lithospheric mantle. The lack of distinct and uniform correlations between the indices of eclogite modification and their water content indicated that the saturation with water was disturbed during their residence within the lithospheric mantle.
DS202108-1268
2021
Aguila, M.Diamonds are a physicist's best friend. Imperfections in jewels used as sensors for new quantum materials. See full ref. McLaughlinucsdnews.ucsd.edu, June 17, 1p. Overview Globaldiamond inclusions

Abstract: Defects found in diamonds are typically received as unwelcome news to the discerning jewelry shopper. But for some physicists, diamond imperfections offer a new opportunity to push the boundaries of futuristic devices that could become the backbone of tomorrow’s computers. UC San Diego Department of Physics Assistant Professor Chunhui Rita Du is a condensed matter experimentalist whose research takes advantage of impurities in diamonds. Du’s research group leverages the red, yellow and blue colors that result from diamond defects to develop sensors that can evaluate the properties of specialized materials down to the nanometer level.
DS202104-0564
2021
Ahline, N., Ardon, T., Overlin, S.D-Z Diamonds ( from the print copy of article in Gems & Gemology)GIAcommunications @gia.edu, gia.org and knowledge sessionsGlobaldiamond genesis

Abstract: G&G’s most recent issue captured the past, present and future of the gem industry - with an overview of European royal jewelry sales (including the sale of Marie Antoinette’s jewelry), in-depth coverage of D-Z diamond knowledge (such as causes of color and formation) and a journey into Vietnamese pearl farming. Tune in as G&G contributors Troy Ardon and Nicole Ahline touch upon these and other highlights from the most recent publication of GIA’s prestigious scientific journal.
DS202110-1598
2021
Aifa, T.Mineralization and sustainable development in the west African craton: from field observations to modelling. ** not specific to diamondsGeological Society of London Special Publication, SP502, 353p. ISBN 9781786204899 July publ. approx lbs 81.00 cost Africacraton

Abstract: This volume combines the results obtained by interdisciplinary groups working on Paleoproterozoic Formations to decipher the origins of the main natural resources through mineralizations and their impacts on the African Economic development. Structural, geophysical, sedimentological, stratigraphical, geochemical, petrophysical and mineralogical analyses are used to highlight the complex mineralizations emplacement and their origin and evolution within the West African Craton.
DS202110-1599
2021
AlrosaAlrosa has completed the first phase of a study into kimberlites' ability to absorb CO2 from the atmosphereMining Magazine.com, Sept. 16, 1p.Russiacarbon
DS202109-1448
2021
Ansari, E., Bidgoli, T.S.Precambrian crystalline basement properties from pressure history matching and implications for induced seismicity in the US Midcontinent.Geochemistry, Geophysics, Geosystems, 10.1029/2021GC009660 11p. PdfUnited States, Kansasgeophysics- seismic

Abstract: Wastewater injection tied to oil and gas development has induced earthquakes across a broad swath of the central US. These earthquakes have almost exclusively occurred in the crystalline rocks, many kilometers below the main disposal zone in this portion of the country, the Arbuckle Group aquifer. However, the hydrologic properties of these deep crystalline rocks are not well known and are needed to accurately model pressure transmission from injection wells to faults in the deep basement and related earthquake hazards. Newly compiled pressure data, from wastewater disposal wells in Kansas, provide an opportunity to constrain these properties. In this study, we construct a detailed, three-dimensional geological model for the Arbuckle and basement, based on data from >400 wells covering south-central Kansas. We use the model to simulate injection and pressures from more than 300 wells. The model indicates that Arbuckle pressures increased by 1.1 MPa in high injection rate areas and overpressures of <0.1 MPa may be the cause of seismicity in the basement. The simulation results also yield the likely range in hydrologic properties for the crystalline basement and suggests large-scale properties of the basement are enhanced by hidden networks of faults and fractures.
DS202106-0921
2021
Antonini, A., Ganuza, M.L. , Ferracutti, G., Gagiulo, M.F., Matkovic, K., Groller, E., Bjerg, E.A., Castro, S.M.Spinel web: an interactive web application for visualizing the chemical composition of spinel group minerals. ** not specific to diamondsEarth Science Informatics, Vol. 14, pp. 521-528. pdfMantletectonics

Abstract: The spinel group minerals provide useful information regarding the geological environment in which the host rocks were formed, constituting excellent petrogenetic indicators, and guides in the search for mineral deposits of economic interest. In this article, we present the Spinel Web, a web application to visualize the chemical composition of spinel group minerals. Spinel Web integrates most of the diagrams commonly used for analyzing the chemical characteristics of the spinel group minerals. It incorporates parallel coordinates and a 3D representation of the spinel prisms. It also provides coordinated views and appropriate interactions for users to interact with their datasets. Spinel Web also supports semi-automatic categorization of the geological environment of formation through a standard Web browser.
DS202103-0367
2021
Armistad, S.E., Collins, A.S., Schmitt, R.S., Costa, R.L., De Waele, B., Razakamanana, T., Payne, J.L., Foden, J.D.Proterozoic basin evolution and tectonic geography of Madagascar: implications for an East Africa connection during the Paleoproterozoic. ( zircon analyses link Tanzania craton and India)Tectonics, doi/epdf/10. 10292020Tc006498 Africa, Madagascarcraton

Abstract: Madagascar hosts several Paleoproterozoic sedimentary sequences that are key to unravelling the geodynamic evolution of past supercontinents on Earth. New detrital zircon U-Pb and Hf data, and a substantial new database of ?15,000 analyses are used here to compare and contrast sedimentary sequences in Madagascar, Africa and India. The Itremo Group in central Madagascar, the Sahantaha Group in northern Madagascar, the Maha Group in eastern Madagascar, and the Ambatolampy Group in central Madagascar have indistinguishable age and isotopic characteristics. These samples have maximum depositional ages > 1700 Ma, with major zircon age peaks at c. 2500 Ma, c. 2000 Ma and c. 1850 Ma. We name this the Greater Itremo Basin, which covered a vast area of Madagascar in the late Paleoproterozoic. These samples are also compared with those from the Tanzania and the Congo cratons of Africa, and the Dharwar Craton and Southern Granulite Terrane of India. We show that the Greater Itremo Basin and sedimentary sequences in the Tanzania Craton of Africa are correlatives. These also tentatively correlate with sedimentary protoliths in the Southern Granulite Terrane of India, which together formed a major intra?Nuna/Columbia sedimentary basin that we name the Itremo?Muva?Pandyan Basin. A new Paleoproterozoic plate tectonic configuration is proposed where central Madagascar is contiguous with the Tanzania Craton to the west and the Southern Granulite Terrane to the east. This model strongly supports an ancient Proterozoic origin for central Madagascar and a position adjacent to the Tanzania Craton of East Africa.
DS202104-0565
2021
Arnaiz-Rodriguez, M., Zhao, Y., Sanchez-Gamboa, A.K., Audemard, F.Crustal and upper-mantle structure of the eastern Caribbean and northern Venezuela from passive Rayleigh wave tomography.Tectonophysics, Vol. 804, 228711 18p. pdf South America, Venezuelageophysics - seismic

Abstract: We explore the shear-wave lithospheric velocity structure of the Eastern Caribbean and Northern Venezuela using ambient noise tomography with stations deployed around the study area. We construct cross-correlation functions from continuous seismic records, and measure phase velocities of fundamental-mode Rayleigh waves. These velocities are further projected onto 0.6°x0.6° phase velocity grids for each period between 5 s and 50 s. The pseudo-dispersion curve at each grid point is inverted for 1D shear velocity profiles by using a Markov Chain Monte Carlo scheme. The interpolated 3D velocity model shows that the mean shear velocity of the Eastern Caribbean lithospheric mantle is lower than the global average, which is in agreement with values reported in other large igneous provinces. We interpret that low velocities in the lithospheric keel are associated with an anomalous composition and/or an elevated thermal state; this gives the Caribbean plate a high buoyancy that determines the subduction polarities in the region. The results also indicate that: (a) the mantle beneath Northern Venezuela retains compositional anomalies related to extension processes of different ages; (b) the overriding of the Caribbean plate by the Great Antilles arc seems to be much slower than previously suggested; and (c) the localized volcanism in the center of the Lesser Antilles arc is related to asthenospheric flow through the tear induced on the subducted slab by major strike-slip faults.
DS202108-1269
2021
Ashchepkov, I.Diamondiferous kimberlites from recently explored Upper Muna field ( Siberian craton): petrology, mineralogy and geochemistry insights.Geological Society of London Special Publications, 513, 34p. PdfRussiadeposit - Upper Muna

Abstract: Petrographic, geochemical and mineralogical characteristics of diamond deposits from the Upper Muna field have been investigated. Geochemically, diamondiferous kimberlites from Upper Muna belong to the most widespread Fe-Mg-rich rocks in the Yakutian kimberlite province (average FeOtotal = 8.4 wt%, MgO = 32.36 wt%, TiO2 = 1.6 wt.%). Striking mineralogical features of Upper Muna kimberlites are: 1) abundance of monticellite and perovskite in the groundmass; 2) rare occurrence of Mg-ilmenite; 3) abundance of phlogopite megacrysts (up to 8 cm across); 4) coexistence of low-Cr (0.1-4wt. % Cr2O3, with 0.8-1.2 wt.% TiO2), and high-Cr (3-8 wt.% Cr2O3, with 0.1-0.6 wt.% TiO2) garnet megacrysts with contrasting REE patterns. The compositional features of groundmass minerals, the relatively low CaO and CO2 contents in kimberlites, and few deuteric alteration in Upper Muna kimberlites suggest high-temperature melt crystallization during pipe emplacement. Based on the compositional data of garnet and Cr-diopside from megacrysts and peridotites, we suggest a poor Cr dunite-harzburgitic and lherzolitic mantle source beneath the Upper Muna field where Cr-diopside crystallized within a wide P-T range (40-65 kbar and 900-1350 °C). Mineral geochemistry, trace element distribution and Sr-Nd isotope variations of Upper Muna kimberlites are typical for group I kimberlites and reflect a deep-seated asthenospheric (convective mantle) source for the kimberlites.
DS202106-0922
2021
Ashchepkov, I.,Medvedev, N.,Ivanov, A., Vladykin, N., Ntafos,T.,Downes, H.,Saprykin, A.,Tolstov, A.Vavilov, M., Shmarov, G.Deep mantle roots of the Zarnitsa kimberlite pipe, Siberian craton, Russia: evidence for multistage polybaric interaction with mantle melts.Journal of Asian Earth Sciences, Vol. 213, 104756, 22p.pdfRussia, Siberiadeposit - Zarnitsa

Abstract: Zarnitsa kimberlite pipe in Central Yakutia contains pyrope garnets with Cr2O3 ranging from 9 to 19.3 wt% derived from the asthenospheric mantle. They show mostly S-shaped, inflected rare earth element (REE) patterns for dunitic and harzburgitic, lherzolitic and harzburgitic varieties and all are rich in high field strength elements (HFSE) due to reaction with protokimberlite melts. Lithospheric garnets (<9 wt% Cr2O3) show a similar division into four groups but have more symmetric trace element patterns. Cr-diopsides suggest reactions with hydrous alkaline, protokimberlitic and primary (hydrous) partial melts. Cr-diopsides of metasomatic origin have inclined REE patterns and high LILE, U, Th and Zr concentrations. Four groups in REE of Ti-rich Cr-diopsides, and augites have asymmetric bell-like REE patterns and are HFSE-rich. Mg-ilmenites low in REE were formed within dunite conduits. Ilmenite derived from differentiated melts have inclined REE patterns with LREE ~ 100 × chondrite levels. Thermobarometry for dunites shows a 34 mWm?2 geotherm with a HT branch (>50 mWm?2) at 6-9 GPa, and a stepped HT geotherm with heated pyroxenite lenses at four levels from 6.5 to 3.5 GPa. Parental melts calculated with KDs suggest that augites and high-Cr garnets in the lithosphere base reacted with essentially carbonatitic melts while garnets from lower pressure show subduction peaks in U, Ba and Pb. The roots of the Zarnitsa pipe served to transfer large portions of deep (>9 GPa) protokimberlite melts to the lithosphere. Smaller diamonds were dissolved due to the elevated oxidation state but in peripheral zones large diamonds could grow.
DS202112-1919
2021
Ashchepkov, I.V., Alymova, N.V., Loginova, A.M., Vladykin, N.V.. Kuligin, S.S., Mityukhin, S.I., Stegnitsky, Y.B., Prokopiev, S.A.Picroilmenites in Yakutian kimberlites: variations and genetic models.Lithos, Vol. 406-407. doi: 10.1016/j.lithos.2021.106499 77p. PdfRussiakimberlite genesis

Abstract: Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5–7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1–10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10–100)/PM with La / Ybn ~ 10–25, similar to those derived from kimberlites, with high-field-strength elements (HFSE) peaks (typical megacrysts). A series of similar patterns results from polybaric Assimilation + fractional crystallization (AFC) crystallization of protokimberlite melts which also precipitated sulfides (Pb < 1) and mixed with partial melts from garnet peridotites. Relatively low-Ti ilmenites with high-Cr content (group 3) probably crystallized in the metasomatic front under the rising protokimberlite source and represent the product of crystallization of segregated partial melts from metasomatic rocks. Cr-rich ilmenites are typical of veins and veinlets in peridotites crystallized from highly contaminated magma intruded into wall rocks in different levels within the mantle columns. Ilmenites which have the highest trace element contents (1000/PM) have REE patterns similar to those of perovskites. Low Cr contents suggest relatively closed system fractionation which occurred from the base of the lithosphere up to the garnet–spinel transition, according to monomineral thermobarometry for Mir and Dachnaya pipes. Restricted trends were detected for ilmenites from Udachnaya and most other pipes from the Daldyn–Alakit fields and other regions (Nakyn, Upper Muna and Prianabarie), where ilmenite trends extend from the base of the lithosphere mainly up to 4.0 GPa. Interaction of the megacryst forming melts with the mantle lithosphere caused heating and HFSE metasomatism prior to kimberlite eruption.
DS202107-1088
2021
Ashchepkov, V., Vladykin, N.V., Kalashnyk, H.A., Medvedev, N.S., Saprykin, A.I., Downes, H., Khmelnikova, O.S.Incompatible element-enriched mantle lithosphere beneath kimberlitic pipes in Proazovie, Ukrainian shield: volatile enriched focused melt flow and connection to mature crust?International Geology Review, Vol. 63, 10, pp. 1288-1309.Europe, Ukrainedeposit - Priazovie

Abstract: Major, minor and trace element compositions of mantle xenocrysts from Devonian kimberlite pipes in the Priazovie give an insight into the mantle structure beneath the SE Ukranian Shield and its evolution. Garnets yield low temperature conditions as determined by monomineral thermobarometry. The mantle lithosphere is sharply divided at 4.2 GPa, marked by a high temperature Cpx-Ilm-Phl trend, eclogites and changes in pyrope geochemistry. Seven layers are detected: Ist layer at 2.5-1 GPa is enriched mantle (Fe#Ol ~ 0.11 ? 0.14) with Gar- pyroxenites and Sp peridotites; IInd at 2.5-3.2 GPa - Gar-Sp (Fe#Ol 0.08 ? 0.10) peridotite. IIId at 4.3-3.2 GPa is formed of Archaean- Proterozoic peridotites with Fe#Ol ~0.07 ? 0.095. IVth at 3.2-5 GPa- contains pyroxenitic Gar with higher Ca, eclogites, Chr and Cpx (Fe#Ol ~0.10 ? 0.125); Vth at 5.8 ? 5 GPa is marked by sub-Ca garnets, Cr-rich chromites and Mg-Cr ilmenites; VIth layer at 5.8-6.8 GPa contains Fe-enriched pyropes, almandines and Cr-Mg ilmenites near the lithosphere base; VIIth layer > 6.8 GPa consists of ‘hot’ Fe-rich garnets. Garnets show increasing enrichment in LREE, LILE, Hf, Zr with decreasing pressure. Primitive garnets have round REE patterns; depleted ones have S-type patterns inflected at Nd. Garnets from 6.5 to 3 GPa show increasing La/Ybn, Zr-Hf, LILE. Peridotitic clinopyroxenes have inclined linear trace element patterns rounded from La to Pr with high LILE and HFSE levels. The Fe-rich group (reacted with eclogites) shows bell-shaped irregular patterns with LILE close to the LREE levels. A possible reason for LILE (HFSE and) enrichment of the upper part of the mantle is subduction metasomatsm in Archaean times (with participation of mature continental sediments) activated by plumes at 1.8 Ga and earlier which produced pervasive focused melt flow with remelting of mica-amphibole metasomatites giving continuous REE and LILE enrichment in mantle lithologies from 5.8 to 2.5 GPa.
DS202109-1449
2021
Ashwal, L.D.Sub-lithospheric mantle sources for overlapping southern African Large Igneous Provinces.South African Journal of Geology, Vol. 124, pp. 421-442.Africa, South Africamagmatism

Abstract: At least four spatially overlapping Large Igneous Provinces, each of which generated ~1 x 106 km3 or more of basaltic magmas over short time intervals (<5 m.y.), were emplaced onto and into the Kaapvaal Craton between 2.7 and 0.18 Ga: Ventersdorp (2 720 Ma, ~0.7 x 106 km3), Bushveld (2 056 Ma, ~1.5 x 106 km3), Umkondo (1 105 Ma, ~2 x 106 km3) and Karoo (182 Ma, ~3 x 106 km3). Each of these has been suggested to have been derived from melting of sub-continental lithospheric mantle (SCLM) sources, but this is precluded because: (1) each widespread heating event sufficient to generate 1 to 2 x 106 km3 of basalt from the Kaapvaal SCLM (volume = 122 to 152 x 106 km3) would increase residual Mg# by 0.5 to 2 units, depending on degree of melting, and source and melt composition, causing significant depletion in already-depleted mantle, (2) repeated refertilization of the Kaapvaal SCLM would necessarily increase its bulk density, compromising its long-term buoyancy and stability, and (3) raising SCLM temperatures to the peridotite solidus would also have repeatedly destroyed lithospheric diamonds by heating and oxidation, which clearly did not happen. It is far more likely, therefore, that the Kaapvaal LIPs were generated from sub-lithospheric sources, and that their diverse geochemical and isotopic signatures represent variable assimilation of continental crustal components. Combined Sr and Nd isotopic data (n = 641) for the vast volumetric majority of Karoo low-Ti tholeiitic magmatic products can be successfully modelled as an AFC mixing array between a plume-derived parental basalt, with <10% of a granitic component derived from 1.1 Ga Namaqua-Natal crust. Archaean crustal materials are far too evolved (?Nd ~ -35) to represent viable contaminants. However, a very minor volume of geographically-restricted (and over-analysed) Karoo magmas, including picrites, nephelinites, meimechites and other unusual rocks may represent low-degree melting products of small, ancient, enriched domains in the Kaapvaal SCLM, generated locally during the ascent of large-volume, plume-derived melts. The SCLM-derived rocks comprise the well-known high-Ti (>2 to 3 wt.% TiO2) magma group, have ?Nd, 182 values between +10.5 and -20.9, and are characteristically enriched in Sr (up to 1 500 ppm), suggesting a possible connection to kimberlite, lamproite and carbonatite magmatism. These arguments may apply to continental LIPs in general, although at present, there are insufficient combined Sr + Nd isotopic data with which to robustly assess the genesis of other southern African LIPs, including Ventersdorp (n = 0), Bushveld (n = 55) and Umkondo (n = 18).
DS202111-1756
2021
Assouline PublisherDiamonds: Diamond Stories ( about fans and celebrities jewels)Assouline.com $95.00, https://lnkd.in/dXWdRYzGlobalBook

Abstract: Formed billions of years ago deep below the surface of the earth, natural diamonds have always had an ethereal mysticism about them. Once reserved only for royals, red carpets, and life’s most celebratory moments, diamonds were seen as symbols of wealth and prosperity that only few could access. But with a new century comes a new expression of luxury, as a new crop of young designers and heritage jewelry houses alike including Sabyasachi, Messika, Anita Ko, Boucheron, and Fernando Jorge are celebrating natural diamonds as an everyday indulgence. Today’s tastemakers are incorporating diamonds into their designs in unexpected ways, unafraid to play around with interesting cuts and colorful hues. In telling the story of today’s expression of natural diamonds and their continous impact on the world, this new volume dives into tales of the world’s most captivating stones, from the Hope Diamond to the legend of the Beau Sancy Diamond. Featuring stunning images; tall tales; and interviews with top designers, tastemakers, and enthusiasts alike; Diamonds is the definitive book on the world’s most sought-after jewel.
DS202102-0173
2020
Aulbach, S., Giuliani, A., Fiorentini, M.L., Baumgartner, R.J., Davard, D., Kamenetsky, V.S., Caruso, S., Danyushevsky, L.V., Powell, W., Griffin, W.L.Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa).Lithos, doi.org/10.1016/ jlithos.2020.105880, 26p. PdfAfrica, South Africadeposit - Bultfontein

Abstract: The metasomatised continental mantle may play a key role in the generation of some ore deposits, in particular mineral systems enriched in platinum-group elements (PGE) and Au. The cratonic lithosphere is the longest-lived potential source for these elements, but the processes that facilitate their pre-concentration in the mantle and their later remobilisation to the crust are not yet well-established. Here, we report new results on the petrography, major-element, and siderophile- and chalcophile-element composition of native Ni, base metal sulphides (BMS), and spinels in a suite of well-characterised, highly metasomatised and weakly serpentinised peridotite xenoliths from the Bultfontein kimberlite in the Kaapvaal Craton, and integrate these data with published analyses. Pentlandite in polymict breccias (failed kimberlite intrusions at mantle depth) has lower trace-element contents (e.g., median total PGE 0.72 ppm) than pentlandite in phlogopite peridotites and Mica-Amphibole-Rutile-Ilmenite-Diopside (MARID) rocks (median 1.6 ppm). Spinel is an insignificant host for all elements except Zn, and BMS and native Ni account for typically <25% of the bulk-rock PGE and Au. High bulk-rock Te/S suggest a role for PGE-bearing tellurides, which, along with other compounds of metasomatic origin, may host the missing As, Ag, Cd, Sb, Te and, in part, Bi that are unaccounted for by the main assemblage. The close spatial relationship between BMS and metasomatic minerals (e.g., phlogopite, ilmenite) indicates that the lithospheric mantle beneath Bultfontein was resulphidised by metasomatism after initial melt depletion during stabilisation of the cratonic lithosphere. Newly-formed BMS are markedly PGE-poor, as total PGE contents are <4.2 ppm in pentlandite from seven samples, compared to >26 ppm in BMS in other peridotite xenoliths from the Kaapvaal craton. This represents a strong dilution of the original PGE abundances at the mineral scale, perhaps starting from precursor PGE alloy and small volumes of residual BMS. The latter may have been the precursor to native Ni, which occurs in an unusual Ni-enriched zone in a harzburgite and displays strongly variable, but overall high PGE abundances (up to 81 ppm). In strongly metasomatised peridotites, Au is enriched relative to Pd, and was probably added along with S. A combination of net introduction of S, Au +/? PGE from the asthenosphere and intra-lithospheric redistribution, in part sourced from subducted materials, during metasomatic events may have led to sulphide precipitation at ~80-120 km beneath Bultfontein. This process locally enhanced the metallogenic fertility of this lithospheric reservoir. Further mobilisation of the metal budget stored in these S-rich domains and upwards transport into the crust may require interaction with sulphide-undersaturated melts that can dissolve sulphides along with the metals they store.
DS202108-1270
2021
Baes, M., Sobolev, S., Gerya, T., Stern, R., Brune, S.Plate motion and plume-induced subduction inititation.Gondwana Research, Vol. 98, pp. 277-288. pdfSouth Americasubduction

Abstract: Impingement of a hot buoyant mantle plume head on the lithosphere is one of the few scenarios that can initiate a new subduction zone without requiring any pre-existing weak zones. This mechanism can start subduction and plate tectonics on a stagnant lid and can also operate during active plate tectonics where plume-lithosphere interactions is likely to be affected by plate motion. In this study, we explore the influence of plate motion on lithospheric response to plume head-lithosphere interaction including the effect of magmatic weakening of lithosphere. Using 3d thermo-mechanical models we show that the arrival of a new plume beneath the lithosphere can either (1) break the lithosphere and initiate subduction, (2) penetrate the lithosphere without subduction initiation, or (3) spread asymmetrically below the lithosphere. Outcomes indicate that lithospheric strength and plume buoyancy control plume penetration through the lithosphere whereas the plate speed has a subordinate influence on this process. However, plate motion may affect the geometry and dynamics of plume-lithosphere interaction by promoting asymmetry in the subduction zone shape. When a sufficiently buoyant plume hits a young but subductable moving lithosphere, a single-slab modern-style subduction zone can form instead of multiple subduction zones predicted by stagnant lid models. In the case of subduction initiation of older moving oceanic lithosphere, asymmetrical cylindrical subduction is promoted instead of more symmetrical stagnant lid subduction. We propose that the eastward motion of the Farallon plate in Late Cretaceous time could have played a key role in forming one-sided subduction along the southern and western margin of the Caribbean and NW South America.
DS202106-0923
2021
Baioumy, H.Geochemistry and origin of high Sr carbonatite from the Nuba Mountains, Arabian-Nubian Shield, Sudan.Journal of Asian Earth Sciences, Vol. 214, 104773, 9p. PdfAfrica, Sudancarbonatites

Abstract: Carbonatite from the Arabian-Nubian Shield of Sudan occurs as dykes in the Nuba Mountains. It is composed of calcite with some feldspars, quartz and fluorite. CaO is the major constituent in this carbonatite and accordingly, it is classified as calico-carbonatite. The studied carbonatite shows exceptionally high concentrations of SrO (4.4 to 5.9 wt%). Ba, Pb and Y occur in relatively higher concentrations compared to other trace elements. Concentration of rare earth elements (?REEs) is relatively low (average 1550 ppm) compared to many primary igneous carbonatites. The chondrite-normalized REE patterns display higher light rare earth elements (LREEs) compared to heavy rare earth elements (HREEs) with slight negative Ce/Ce* and Eu/Eu* anomalies. The ?18OV-SMOW values range between 7.48 and 10.05‰, while ?13CV-PDB values vary from ?6.24 to ?7.38‰, which is close to the primary carbonatites values. Occurrence of carbonatite as dykes with cumulate and triple junction textures, plot of the carbonatite in the true carbonatite fields of the Ba-Sr and Ba + Sr-REE + Y diagrams, igneous-derived ?13CV-PDB and ?18OV-SMOW values and high (La/Yb)N ratios indicate its primary igneous origin. The strong positive correlation between REEs and Sr suggests the occurrence of these elements as secondary strontianite, which was confirmed by SEM and EDX analyses. This might indicate that the enrichment of REEs and Sr in the studied carbonatite is not from the primary magma and most probably took place during a sub-solidus metasomatic process after the carbonatite emplacement.
DS202109-1450
2021
Baioumy, H.Geochemistry and origin of high -Sr carbonatite from the Nuba Mountains, Arabian-Nubian shield, Sudan.Journal of Asian Earth Sciences, Vol. 214, 104773, 10p. PdfAfrica, Sudancarbonatite
DS202109-1451
2021
Bajgain, S.K. Earth's core could be the largest terrestrial carbon reservoir.Communications Earth & Environment, doi.org/10.1038/s43247-021-00222-7Mantlecarbon

Abstract: Evaluating carbon’s candidacy as a light element in the Earth’s core is critical to constrain the budget and planet-scale distribution of this life-essential element. Here we use first principles molecular dynamics simulations to estimate the density and compressional wave velocity of liquid iron-carbon alloys with ~4-9 wt.% carbon at 0-360 gigapascals and 4000-7000 kelvin. We find that for an iron-carbon binary system, ~1-4 wt.% carbon can explain seismological compressional wave velocities. However, this is incompatible with the ~5-7 wt.% carbon that we find is required to explain the core’s density deficit. When we consider a ternary system including iron, carbon and another light element combined with additional constraints from iron meteorites and the density discontinuity at the inner-core boundary, we find that a carbon content of the outer core of 0.3-2.0 wt.%, is able to satisfy both properties. This could make the outer core the largest reservoir of terrestrial carbon.
DS202108-1271
2021
Banerjee, A., Satish-Kumar, M., Chakrabarti, R.Sulfur, carbon and oxygen isotopic compositions of Newania carbonatites of India: implications for the mantle source characteristics.Journaof Mineralogical and Petrological Sciences, Vol. 116, pp. 121-128 pdfIndiadeposit - Newania

Abstract: This study presents first report of the sulfur isotopic compositions of carbonatites from the Mesoproterozoic Newania complex of India along with their stable C and O isotope ratios. The ?34SV-CDT (?1.4 to 2‰) and ?33S (?0.001 to ?0.13‰) values of these carbonatite samples (n = 7) overlap with the S isotope compositions of Earth’s mantle. Additionally, the ?13CV-PDB and ?18OV-SMOW values of these carbonatites also show overlapping compositions to that of Earth’s mantle. Based on these mantle-like stable isotopic compositions of carbonatites along with their higher crystallization temperature (~ 600 °C) compared to a hydrothermal fluid (<250 °C), we suggest that the sulfide minerals in these carbonatites were formed under a magmatic condition. The mantle like signatures in the ?34S, ?13C- ?18O, and 87Sr/86Sr values of these carbonatites rule out possible crustal contamination. Coexistence of the sulfide phase (pyrrhotite) with magnesite in these carbonatites suggests that the sulfide phase has formed early during the crystallization of carbonatite magmas under reducing conditions. Overall restricted variability in the ?34S values of these samples further rules out any isotopic fractionation due to the change in the redox condition of the magma and reflect the isotopic composition of the parental melts of the Newania carbonatite complex. A compilation of ?34S of carbonatites from Newania and other complexes worldwide indicates limited variability in the isotopic composition for carbonatites older than 400 Ma, which broadly overlaps with Earth’s asthenospheric mantle composition. This contrasts with the larger variability in ?34S observed in carbonatites younger than 400 Ma. Such observation could suggest an overall lower oxidation state of carbonatite magmas emplaced prior to 400 Ma.
DS202108-1272
2021
Barbaro, B.A., Domeneghetti, M.C., Litasov, K.D., Ferriere, L., Pittarello, L., Christ, O., Lorenzon, S., Alvaro, M., Nestola, F.Origin of micrometer-sized impact diamonds in urelilites by catalytic growth involving Fe-Ni-silicide: the example of Kenna meteorite.Geochimica et Cosmochimica Acta, doi.org/10.1016/j.gca.2021.06.022 31p. PdfGlobalmeteorite

Abstract: The occurrence of shock-induced diamonds in ureilite meteorites is common and is used to constrain the history of the ureilite parent bodies. We have investigated a fragment of the Kenna ureilite by micro-X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy to characterize its carbon phases. In addition to olivine and pigeonite, within the carbon-bearing areas, we identified microdiamonds (up to about 10 ?m in size), nanographite and magnetite. The shock features observed in the silicate minerals and the presence of microdiamonds and nanographite indicate that Kenna underwent a shock event with a peak pressure of at least 15 GPa. Temperatures estimated using a graphite geothermometer are close to 1180 °C. Thus, Kenna is a medium-shocked ureilite, yet it contains microdiamonds, which are typically found in highly shocked carbon-bearing meteorites, instead of the more common nanodiamonds. This can be explained by a relatively long shock event duration (in the order of 4-5 s) and/or by the catalytic effect of Fe-Ni alloys known to favour the crystallization of diamonds. For the first time in a ureilite, carletonmooreite with formula Ni3Si and grain size near 4-7 nm, was found. The presence of nanocrystalline carletonmooreite provides further evidence to support the hypothesis of the catalytic involvement of Fe-Ni bearing phases into the growth process of diamond from graphite during shock events in the ureilite parent body, enabling the formation of micrometer-sized diamond crystals.
DS202108-1273
2021
Barnes, S.J., Williams, M., Smithies, R.H., Hanski, E., Lowrey, J.R.Trace element contents of mantle derived magmas through time.Mineralium Deposita, Vol. 56, pp. 1133-1150.Mantlemagmatism

Abstract: A large compilation of quality-curated major and trace element data has been assembled to investigate how trace element patterns of mafic and ultramafic magmas have varied with time through particular settings from the Archean to the Phanerozoic, the primary objective being to recognise at what times particular patterns of variation emerge, and how similar these are to baseline data sets representing tectonic settings in the modern Earth. The most informative element combinations involve Nb, Th and the REE, where REE are represented by ‘lambda’ parameters describing slope and shape of patterns. Combinations of the ratios of Th, Nb, La and lambda values from Archean and early Proterozoic basalts and komatiites reveal a distinctive pattern that is common in most well-sampled terranes, defining a roughly linear trend in multi-dimensional space from compositions intermediate between modern n-MORB and primitive mantle at one end, towards compositions approximating middle-to-upper continental crust at the other. We ascribe this ‘Variable Th/Nb’ trend in most instances to varying degrees of crustal contamination of magmas with similar compositions to modern oceanic plateau basalts. Komatiites had slightly more depleted sources than basalts, consistent with the hypothesis of derivation from plume tails and heads, respectively. The most significant difference between Precambrian and Phanerozoic plume-derived basalts is that the distinctive OIB-like enriched source component appears to be largely missing from the Archean and Proterozoic geologic record, although isolated examples of OIB-like trace element characteristics are evident in datasets from even the oldest preserved greenstones. Phanerozoic intra-cratonic LIPs, such as the 260?Ma Emeishan LIP in China, have fundamentally different geochemical characteristics to Archean and Paleoproterozoic assemblages; the oldest Proterozoic LIP we have identified that has this type of ‘modern’ signal is the Midcontinent Rift at 1100?Ma. The data are consistent with plume tail sources having changed from being dominantly depleted in the Archean Earth to dominantly enriched in the Phanerozoic Earth, while plume head sources have hardly changed at all. Trace element patterns considered to be diagnostic of subduction are locally present but rare in Archean terranes and become more prevalent through the Proterozoic, although this conclusion is tempered by the large degree of overlap in compositional space between continental arc magmas and continental flood basalts. This overlap reflects the difficulty of distinguishing the effects of supra-subduction metasomatizm and flux melting from those of crustal contamination. Additional factors must also be borne in mind, particularly that trace element partitioning systematics may have been different in all environments in a hotter planet, and large-scale asthenospheric overturns might have been predominant over modern-style plumes in the Archean Earth. Some basaltic suites in particular Archean terranes, notably the western parts of both the Yilgarn and Pilbara cratons in Western Australia and parts of the Superior Craton, have restricted, but locally predominant, suites of basalts with characteristics akin to modern oceanic arcs, suggesting that some process similar to modern subduction was preserved in these particular belts. Ferropicrite magmas with distinctive characteristics typical of modern OIBs and some continental LIPs (notably Emeishan) are rare but locally predominant in some Archean and early Proterozoic terranes, implying that plume sources were beginning to be fertilised by enriched, probably subducted, components as far back as the Mesoarchean. We see no evidence for discontinuous secular changes in mantle-derived magmatism with time that could be ascribed to major mantle reorganisation events. The Archean-Proterozoic transition appears to be entirely gradational from this standpoint. The transition from Archean-style to Phanerozoic-style plume magmatism took place somewhere between 1900?Ma (age of the Circum-Superior komatiitic basalt suites) and 1100?Ma (the age of the Midcontinent Rift LIP).
DS202110-1600
2021
Barrie, E., Eaton-Magana, S.CVD Laboratory-grown diamond with counterfeit GIA inscription.Gems & Gemology, Vol. 57, 2, summer pp. 150-152. gia.edu/gems-gemologyUnited States, Californiasynthetic

Abstract: In recent months, GIA has seen a number of laboratory-grown diamonds submitted for update or verification services with counterfeit inscriptions referencing GIA natural diamond reports ("GIA laboratory prevents attempted fraud"). One recent example is a 3.07 ct round brilliant submitted to the Antwerp lab for update service (figure 1). It bore an inscription matching a GIA report for a natural diamond that had been submitted in 2018. Microscopic examination quickly revealed, however, that the inscription was in fact fraudulent. Further analysis indicated a laboratory-grown origin.
DS202102-0174
2021
Barry, P.H., Broadley, M.W.Nitrogen and noble gases reveal a complex history of metasomatism in the Siberian lithospheric mantle.Earth and Planetary Science Letters, Vol. 556, doi.org/10.1016 /j.epsl.2020. 116707 12p. PdfRussianitrogen

Abstract: The Siberian flood basalts (SFB) erupted at the end of the Permian period (?250 Ma) in response to a deep-rooted mantle plume beneath the Siberian Sub-Continental Lithospheric Mantle (SCLM). Plume-lithosphere interaction can lead to significant changes in the structure and chemistry of the SCLM and trigger the release of metasomatic material that was previously stored within the stable craton. Here, we investigate the nature of the Siberian-SCLM (S-SCLM) by measuring nitrogen abundances and isotopes (N) in 11 samples of two petrologically-distinct suites of peridotitic xenoliths recovered from kimberlites which bracket the eruption of the SFB: the 360 Myr old Udachnaya and 160 Myr old Obnazhennaya pipes. Nitrogen isotope (N) values range from -5.85 ± 1.29‰ to +3.94 ± 0.63‰, which encompasses the entire range between depleted Mid-Ocean Ridge Basalt (MORB) mantle (DMM; -5 ± 2‰) and plume-derived (+3 ± 2‰) endmembers. In addition, we present neon (n=7) and argon (n=8) abundance and isotope results for the same two suites of samples. The 20Ne/22Ne and 21Ne/22Ne range from atmospheric-like values of 9.88 up to 11.35 and from 0.0303 to 0.0385, respectively, suggesting an admixture of DMM and plume-derived components. Argon isotopes (40Ar/36Ar) range from 336.7 to 1122 and correlate positively with 40Ar contents. We show that volatile systematics of Siberian xenoliths: (1) exhibit evidence of ancient metasomatic and/or recycled signatures, and (2) show evidence of subsequent plume-like re-fertilization, which we attribute to the emplacement of the SFB. Metasomatic fluids are highly enriched in radiogenic gases and have elevated Br/Cl and I/Cl values, consistent with an ancient subducted crustal component. The metasomatic component is marked by light N isotope signatures, suggesting it may be derived from an anoxic Archean subducted source. Taken together, these N2-Ne-Ar isotope results suggest that mantle plume impingement has profoundly modified the S-SCLM, and that N, Ne and Ar isotopes are sensitive tracers of metasomatism in the S-SCLM. Metasomatic fluids that permeate the S-SCLM act to archive a “subduction-fingerprint” that can be used to probe relative volatile-element recycling efficiencies and thus provide insight into volatile transport between the surface and mantle reservoirs over Earth history.
DS202107-1089
2021
Bassoo, R., Befus, K.S.Composition of the sub-cratonic mantle of the Guiana shield inferred from diamond-hosted inclusions.Geochemistry, Geophysics, Geosytems, 24p. PdfSouth America, Venezueladiamond inclusions

Abstract: Diamonds entrap mantle inclusions and shield them from alteration by magmatic and tectonic processes. Diamonds from Guyana are an understudied diamond suite, and the inclusions they contain provide us a window into the sub-cratonic mantle beneath northern South America. We used crystalline inclusions inside of Guyanese diamonds to infer the composition of the underlying mantle, and make estimates for its structural properties. The inclusions empirically demonstrate the long-lived, dry, and reduced nature of cratonic roots, lending evidence to the mechanism behind their preservation through time.
DS202109-1452
2021
Bates, R.So what happens to Afghanistan's gems now?JCKmagazine.com, Aug. 20, 4p. PdfAsia, Afghanistanemerald
DS202106-0924
2021
Becker, T., Boschi, L.Multi-scale, radially anisotropic shear wave imaging of the mantle underneath the contiguous United States through joint inversion of USArray and global datasets.Geophysical Journal International, 34p. PdfUnited Statestomography

Abstract: EarthScope's USArray seismic component provided unprecedented coverage of the contiguous United States and has therefore spurred significant advances in tomographic imaging and geodynamic modelling. Here, we present a new global, radially anisotropic shear wave velocity tomography model to investigate upper mantle structure and North American Plate dynamics, with a focus on the contiguous United States. The model uses a data-adaptive mesh and traveltimes of both surface waves and body waves to constrain structure in the crust and mantle in order to arrive at a more consistent representation of the subsurface compared to what is provided by existing models. The resulting model is broadly consistent with previous global models at the largest scales, but there are substantial differences under the contiguous United States where we can achieve higher resolution. On these regional scales, the new model contains short wavelength anomalies consistent with regional models derived from USArray data alone. We use the model to explore the geometry of the subducting Farallon Slab, the presence of upper mantle high velocity anomalies, low velocity zones in the central and eastern United States and evaluate models of dynamic topography in the Cordillera. Our models indicate a single, shallowly dipping, discontinuous slab associated with the Farallon Plate, but there are remaining imaging challenges. Inferring dynamic topography from the new model captures both the long-wavelength anomalies common in global models and the short-wavelength anomalies apparent in regional models. Our model thus bridges the gap between high-resolution regional models within the proper uppermost mantle context provided by global models, which is crucial for understanding many of the fundamental questions in continental dynamics.
DS202111-1757
2021
Bedard, J.H., Troll, V,R., Deegan, F.M., Tegner, C., Saumur, B.M., Evenchick, C.A., Grasby, S.E., Dewing, K.High Arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, Vol. 62, 9, pp. 1-31. pdfCanada, Ellesmere Islandalkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanic rocks. The younger alkaline group is represented by the Wootton Intrusive Complex (92•2-92•7?Ma), and the Audhild Bay Suite (83-73?Ma), both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations, which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare earth element (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5 + Zr (PZr) and High-P2O5 + K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases such as apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1) could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provides little support for a ubiquitous fossil sedimentary subduction-zone component in the HALIP mantle source.
DS202107-1090
2021
Bedard, J.H., Troll, V.R., Deegan F.M., Tegner, C., Sauumur, B. M., Evenchick, C.A., Grasby, S.E., Dewing, K.High Arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, 113p. In press availableCanada, Ellesmerealkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly-defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanics. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7?Ma), and the Audhild Bay Suite (83-73?Ma); both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations; which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally-derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare-earth (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5+Zr (PZr) and High-P2O5+K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases like apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1), could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provide little support for an ubiquitous fossil sedimentary subduction zone component in the HALIP mantle source.
DS202108-1274
2021
Bedard, J.H., Troll, V.R., Deegan, F.M., Tegner, C., Saumor, B.M., Evenchick, C.A., Grasby, S.E., Dewing, K.High arctic large igneous province alkaline rocks in Canada: evidence for multiple mantle components.Journal of Petrology, 113p. PdfCanada, Ellesmere Islandalkaline rocks

Abstract: The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90?Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (?96?Ma) scatter around major fault and basement structures. They are represented by the newly-defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanics. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7?Ma), and the Audhild Bay Suite (83-73?Ma); both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations; which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet lherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low 87Sr/86Sri. These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally-derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare-earth (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5+Zr (PZr) and High-P2O5+K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases like apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1), could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provide little support for an ubiquitous fossil sedimentary subduction zone component in the HALIP mantle source.
DS202109-1453
2021
Beddie, H., Coper, C.M., Frost, C.D.Nature versus Nurture: preservation and destruction of Archean cratons.Tectonics, e2021TC006714 67p. PdfMantlecratons

Abstract: Because of Earth’s dynamic tectonic processes, much of its continental crust has been eroded and recycled and only a fraction of crust older than 2.5 billion years has survived to the present-day. These areas of old crust, known as Archean cratons, have not experienced deformation or magmatism for a billion years or more. This paper investigates whether craton survival is related to their nature, that is, the conditions of their formation, or to nurture, the subsequent events they experienced. Eight case studies are used to evaluate the properties and processes that promote craton stability. Nature is important: surviving Archean cratons tend to be buoyant, viscous, cold, and thick. Some survive because they have not experienced destabilizing geologic processes that introduce heat, magma, and fluids. Others have been modified to various extents by these processes. Some have been weakened and thinned and other, only marginally stable cratons are susceptible to future deformation and destruction. We conclude that both nature and nurture are essential to the survival of Earth’s oldest crust.
DS202107-1091
2021
Bekaert, D.V., Turner, S.J., Broadley, M.W., Barnes, J.D., Halldorsson, S.A., Labidi, J., Wade, J., Walowski, K.J., Barry, P.H.Subduction-driven volatile recycling: a global mass balance.Annual Review of Earth and Planetary Sciences, Vol. 49, pp. 37-70.Mantlesubduction

Abstract: Volatile elements (water, carbon, nitrogen, sulfur, halogens, and noble gases) played an essential role in the secular evolution of the solid Earth and emergence of life. Here we provide an overview of Earth's volatile inventories and describe the mechanisms by which volatiles are conveyed between Earth's surface and mantle reservoirs, via subduction and volcanism. Using literature data, we compute volatile concentration and flux estimates for Earth's major volatile reservoirs and provide an internally balanced assessment of modern global volatile recycling. Using a nitrogen isotope box model, we show that recycling of N (and possibly C and S) likely began before 2 Ga and that ingassing fluxes have remained roughly constant since this time. In contrast, our model indicates recycling of H2O(and most likely noble gases) was less efficient in the past. This suggests a decoupling of major volatile species during subduction through time, which we attribute to the evolving thermal regime of subduction zones and the different stabilities of the carrier phases hosting each volatile. This review provides an overview of Earth's volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs via subduction. The review frames the current thinking regarding how Earth acquired its original volatile inventory and subsequently evolved through subduction processes and volcanism.
DS202110-1601
2021
Benmore, C.J., Wilding, M.C.Probing the structure of melts, glasses, and amorphous materials.Elements, Vol. 17, pp. 175-180.Mantlemelting

Abstract: Liquids, glasses, and amorphous materials are ubiquitous in the Earth sciences and are intrinsic to a plethora of geological processes, ranging from volcanic activity, deep Earth melting events, metasomatic processes, frictional melting (pseudotachylites), lighting strikes (fulgurites), impact melting (tektites), hydrothermal activity, aqueous solution geochemistry, and the formation of dense high-pressure structures. However, liquids and glassy materials lack the long-range order that characterizes crystalline materials, and studies of their structure require a different approach to that of conventional crystallography. The pair distribution function is the neutron diffraction technique used to characterize liquid and amorphous states. When combined with atomistic models, neutron diffraction techniques can determine the properties and behavior of disordered structures.
DS202103-0368
2021
Bergman, S.C., Eldrett, J.S., Minisini, D.Phanerozoic Large Igneous Province, Petroleum system, and source rock links.American Geophysical Union and Wiley editors Ernst, R.E., Dickson, A.J., Bekker, A. Monograph 255, Chapter 9, 38p. Pdf doi:10.1002/ 9781119507444 open accessMantleplumes

Abstract: This chapter summarizes geochronologic and other data for major Phanerozoic Large Igneous Provinces (LIPs), Oceanic Anoxic Events (OAEs) and organic?rich petroleum source rocks. It also evaluates the models that support or refute genetic links between the three groups. The evidence appears to favor genetic links between the three groups, however, additional high precision age and geochemical data are needed to validate several events. Furthermore, the chapter provides insights into the importance of LIPs in hydrocarbon exploration.
DS202103-0369
2021
Bettucci, L.S., Loureiro, J., Demarco, P.N.Airborne geophysical characterization of Uruguayan basement.Journal of South American Earth Sciences, Vol. 108, 103206, 17p. PdfSouth America, Uruguaygeophysics

Abstract: The integrated observation of geology, gammaspectrometry and magnetometry of southern Uruguay was made possible by the high-resolution aerogeophysical survey carried out during 2014 and 2015. This survey covers nearly the outcropping area of the Uruguayan basement. Previous studies focused on the Proterozoic and Mesozoic dike swarms present in the Uruguayan basement. In this work we address features previously undescribed and unstudied in the Uruguayan basement. Structures previously grouped with the dike swarm are separated (subcircular structures and a lava river) and the basement general patterns were studied. Distinctive magnetic and radiometric features characterize each structural block in the Uruguayan basement, supporting the main tectonic units previously described, but improving the location of their limits.
DS202101-0001
2020
Bindi, L., Camara, F., Gain, S.E.M., Griffin, W.L., Huang, J-X., Saunders, M., Toledo, V.Kishonite, VH2 and oreillyite, Cr2N, two new minerals from the conundrum xenocrysts of Mt. Carmel, northern Israel.Minerals MDPI, Vol. 10, 1118, doi:10.3390/ min10121118 10p. PdfEurope, Israeldeposit - Mt. Carmel

Abstract: Here, we describe two new minerals, kishonite (VH2) and oreillyite (Cr2N), found in xenoliths occurring in pyroclastic ejecta of small Cretaceous basaltic volcanoes exposed on Mount Carmel, Northern Israel. Kishonite was studied by single-crystal X-ray diffraction and was found to be cubic, space group Fm3¯m, with a = 4.2680(10) Å, V = 77.75(3) Å3, and Z = 4. Oreillyite was studied by both single-crystal X-ray diffraction and transmission electron microscopy and was found to be trigonal, space group P3¯1m, with a = 4.7853(5) Å, c = 4.4630(6) Å, V = 88.51 Å3, and Z = 3. The presence of such a mineralization in these xenoliths supports the idea of the presence of reduced fluids in the sublithospheric mantle influencing the transport of volatile species (e.g., C, H) from the deep Earth to the surface. The minerals and their names have been approved by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association (No. 2020-023 and 2020-030a).
DS202109-1454
2021
Bindi, L., Sinmyo, R., Bykova, E., Ovsyannikov, S.V., McCammon, C., Kupenko, I., Ismailova, L., Dubrovinsky, L., Xie, X.Discovery of Elgoresyite ( Mg,FE)5Si2O9: implications for novel iron magnesium silicates in rocky planetery interiors. Mentions Earth's magmatismACS Earth Space Chemistry, Vol. 5, pp. 2124-2130.Mantlebridgmanite

Abstract: As the most abundant material of rocky planets, high-pressure polymorphs of iron- and aluminum-bearing magnesium silicates have long been sought by both observations and experiments. Meanwhile, it was recently revealed that iron oxides form (FeO)m(Fe2O3)n homologous series above ?10 GPa according to laboratory high-pressure experiments. Here, we report a new high-pressure iron-magnesium silicate, recently approved by the International Mineralogical Association as a new mineral (No. 2020-086) and named elgoresyite, in a shock-induced melt vein of the Suizhou L6 chondrite with a chemistry of (Mg,Fe)5Si2O9. The crystal structure of this new silicate is the same as the iron oxide Fe7O9, strongly suggesting that silicates also form ((Mg,Fe)O)m + n(SiO2)n series that are isostructural to iron oxides via (Mg2+,Fe2+) + Si4+ = 2Fe3+ substitution. To test this hypothesis, the phase relationships of the silicates and iron oxides should be further investigated at higher temperature conditions. Newly found iron-magnesium silicate is a potential constituent mineral in rocky planets with relatively high MgO + FeO content.
DS202112-1920
2021
Blanchard. I., Abeykon, S., Frost, D.J., Rubie, D.C.Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions.American Mineralogist, Vol. 106, pp. 1835-1843. pdfMantlesulfides

Abstract: The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the efects of silicate melt composition and its capacity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the efect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth’s primitive magma ocean, and show that FeS will exsolve from the molten silicate and can efectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean.
DS202102-0175
2020
Blanks, D.E., Holwell, D.A., Fiorentini, M.L., Moroni, M., Giuliani, A., Tassara, S., Gonzales-Jiminez, J.M., Boyce, A.J., Ferrari, E.Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust.Nature Communications, doi.org/10.1038/ s41467-020-18157-6 11p. Pdf Mantlecarbon

Abstract: Magmatic systems play a crucial role in enriching the crust with volatiles and elements that reside primarily within the Earth’s mantle, including economically important metals like nickel, copper and platinum-group elements. However, transport of these metals within silicate magmas primarily occurs within dense sulfide liquids, which tend to coalesce, settle and not be efficiently transported in ascending magmas. Here we show textural observations, backed up with carbon and oxygen isotope data, which indicate an intimate association between mantle-derived carbonates and sulfides in some mafic-ultramafic magmatic systems emplaced at the base of the continental crust. We propose that carbon, as a buoyant supercritical CO2 fluid, might be a covert agent aiding and promoting the physical transport of sulfides across the mantle-crust transition. This may be a common but cryptic mechanism that facilitates cycling of volatiles and metals from the mantle to the lower-to-mid continental crust, which leaves little footprint behind by the time magmas reach the Earth’s surface.
DS202110-1602
2021
Boneh, Y., Chin, E.J., Hirth, G.Microstructural analysis of a mylonitic mantle xenolith sheared laboratory-like strain rates from the edge of the Wyoming craton.Minerals MDPI, Vol. 11, 995, 18p. PdfUnited States, Montana, Wyoming, Utah, Canada, Alberta, Saskatchewancraton

Abstract: Combined observations from natural and experimental deformation microstructures are often used to constrain the rheological properties of the upper mantle. However, relating natural and experimental deformation processes typically requires orders of magnitude extrapolation in strain rate due to vastly different time scales between nature and the lab. We examined a sheared peridotite xenolith that was deformed under strain rates comparable to laboratory shearing time scales. Microstructure analysis using an optical microscope and electron backscatter diffraction (EBSD) was done to characterize the bulk crystallographic preferred orientation (CPO), intragrain misorientations, subgrain boundaries, and spatial distribution of grains. We found that the microstructure varied between monophase (olivine) and multiphase (i.e., olivine, pyroxene, and garnet) bands. Olivine grains in the monophase bands had stronger CPO, larger grain size, and higher internal misorientations compared with olivine grains in the multiphase bands. The bulk olivine CPO suggests a dominant (010)[100] and secondary activated (001)[100] that are consistent with the experimentally observed transition of the A to E-types. The bulk CPO and intragrain misorientations of olivine and orthopyroxene suggest that a coarser-grained initial fabric was deformed by dislocation creep coeval with the reduction of grain size due to dynamic recrystallization. Comparing the deformation mechanisms inferred from the microstructure with experimental flow laws indicates that the reduction of grain size in orthopyroxene promotes activation of diffusion creep and suggests a high activation volume for wet orthopyroxene dislocation creep.
DS202110-1603
2021
Borenstein, G., Oneal, S.Rare mixed type IaB-IIb diamond with a long-lasting phosphorescence. Stuller's Gem Lab.Gems & Gemology, Vol. 57, 2, summer pp. 178-179. gia.edu/gems-gemologyUnited States, Louisiannaluminescence
DS202111-1758
2020
Boutyon, A., Klausen, M., Mata, J., Tappe, S., Farquhar, J., Cartigny, P.Multiple sulfur isotopes of carbonatites, a window into their formation conditions.Goldschmidt2020, 1p. Abstract pdfMantlecarbonatite

Abstract: Carbonatites are rare volcanic rocks whose carbon/oxygen isotope signatures point towards a mantle origin. However there is still debate on the role of processes such as partial melting or the recycling of sediments for their generation. Carbonatite quadruple sulfur isotope measurements should be useful for deciphering the imprints of Earth’s earliest atmosphere and microbial cycling, two processes isotopically characterized by different slopes in a ?33S-?36S diagram, and thus help to better understand the origin of carbonatites, and the possiblity of sedimentary precursors, in greater detail. We report here multiple sulfur data for a wide range of carbonatite samples: 4 continents, from today to 3Ga, oceanic and continental settings. 80 measurements from 18 localities yielded sulfur in sulfides between 0 to 1wt%, with ?34S ranging from -20‰ to +10‰. The record through time seems to correlate with the sedimentary record albeit with some delay. ?33S varies between -0.1 to 0.4‰. Most of the samples display unequivocal mass-dependent fractionation, characteristic of the sedimentary record. A few samples show mass-independent fractionation. ?33S shows a temporal variation from near zero at 3Ga to positive values until 500Ma and then a broadening with both positive and negative values. This is interpreted to reflect the assimilation of surface derived sulfur in the source of carbonatites. The mixing with mantle sulfur narrows the amplitude of the variation and a crustal imprint could blur the signal as well. However coupled ?34S-?33S point toward two different stages in the sulfur isotopic signature: a long recycling before 900Ma and a much shorter residence time, on the order of 300 Myrs, after. This could be linked with a preferential recycling of sulfides in the early time and a recycling of both sulfides and sulfates later on.
DS202104-0566
2021
Branchetti, M., Zepper, J.C.O., Peters, S.T.J., Koornneef, J.M., Davies, G.Multi-stage formation and destruction in Kimberley harzburgitic xenoliths, South Africa.Lithos, in press available, 57p. PdfAfrica, South Africadeposit - Kimberley

Abstract: Thirty-nine garnet harzburgites from Kimberley in the Kaapvaal Craton (South Africa) were studied to constrain the origin, age and evolution of sub-cratonic lithospheric mantle (SCLM). In order to avoid chemical overprinting by recent metasomatism, only garnet harzburgites that appeared clinopyroxene-free to the naked eye were sampled. The majority of garnets were, however, in equilibrium with clinopyroxene (24 of 39). Whole rock and mineral major-trace element geochemistry and garnet Sr-Nd-Hf isotope data are presented. Equilibration pressures range from 3.8-6.1?GPa, indicating the harzburgites were derived from a large portion of the SCLM (~115-185?km). High olivine Mg# (~93.4, n?=?39) and low whole rock heavy rare earth elements (HREE) contents are consistent with large degrees of partial melting (>45%) and garnet exhaustion leaving a dunitic residue with olivine ?90%, orthopyroxene ?10% and HREE <0.01 times chondrite. Mineral modes, whole rock Al2O3 (0.5-3.2?wt%) and SiO2 (43.1-49.1?wt%), however, indicate heterogeneous re-introduction of garnet (?13%) and orthopyroxene (?50%). Harzburgites with high garnet and relatively low orthopyroxene modes (mostly ~7-13% and?~?9-30%; n?=?6) are characterised by mildly sinusoidal garnet REE patterns (Tbsingle bondDy minimum and high HREE) and Archaean depleted Hf TDM ages (2.7-3.3?Ga; ?Hfe: +190 to +709). In contrast, harzburgites with high orthopyroxene and relatively low garnet and modes (~1.5-7.5% and?~?25-50%; n?=?19) are characterised by highly sinuous REE patterns (Hosingle bondYb minimum and low HREE) and Proterozoic enriched Hf TDM ages (0.7-1.6?Ga; ?Hfe: ?16 to +6). It is inferred that Archaean G10 garnet re-introduction caused a significant increase in HREE, making melt depletion models based on HREE inaccurate. Orthopyroxene addition, a few hundred million years later, most likely at ~2.7?Ga and associated with Ventersdorp magmatic activity, caused partial consumption of garnet and olivine, and changed garnet compositions leading to: 1) Cr/Al ratio increase; 2) HREE decrease; 3) more sinusoidal REE patterns; and 4) un-radiogenic 176Hf/177Hf. Garnets define a Lusingle bondHf isochron age of 2702?±?64?Ma (?Hfi?=?+44, n?=?31), which is interpreted as a consequence of partial isotopic equilibrium within the SCLM and mixing of the garnet- and orthopyroxene-rich metasomatic components. The low LILE contents and absence of Nbsingle bondTa anomalies are consistent with modal metasomatism caused by intra-plate magmatism. In addition, the REE signatures of metasomatic agents in equilibrium with the garnets suggest that carbonatitic melts and SiO2-rich hydrous melts were responsible for re-introduction of garnet and orthopyroxene, respectively. Srsingle bondNd isotope systematics were disrupted associated with kimberlite magmatism (Nd isochron: 217?±?58?Ma, ?Ndi?=?+4; n?=?34), consistent with recent G10 garnet transformation into G9 garnets (Ca?+?Fe-enriched). This event may have caused garnet addition (up to 1%), suggesting that garnet was formed or destroyed in at least 4 different events: i) initial extensive polybaric melting, ii) asthenospheric melts re-introducing the bulk of the garnet, iii) orthopyroxene addition and garnet loss, all in the Archaean, and iv) minor garnet addition possibly related to recent kimberlite magmatism prior to eruption.
DS202102-0176
2021
Brenker, F.E., Nestola, F., Brenker, L., Peruzo, L., Harris, J.WOrigin, properties, and structure of breyite: the second most abundant mineral inclusion in super-deep diamonds.The American Mineralogist, Vol. 106, pp. 38-43. pdfMantleperovskites, mineral inclusions

Abstract: Earth's lower mantle most likely mainly consists of ferropericlase, bridgmanite, and a CaSiO3- phase in the perovskite structure. If separately trapped in diamonds, these phases can be transported to Earth's surface without reacting with the surrounding mantle. Although all inclusions will remain chemically pristine, only ferropericlase will stay in its original crystal structure, whereas in almost all cases bridgmanite and CaSiO3-perovskite will transform to their lower-pressure polymorphs. In the case of perovskite structured CaSiO3, the new structure that is formed is closely related to that of walstromite. This mineral is now approved by the IMA commission on new minerals and named breyite. The crystal structure is triclinic (space group: P1) with lattice parameters a0 = 6.6970(4) Å, b0 = 9.2986(7) Å, c0 = 6.6501(4) Å, ? = 83.458(6)°, ? = 76.226(6)°, ? = 69.581(7)°, and V = 376.72(4) Å. The major element composition found for the studied breyite is Ca3.01(2)Si2.98(2)O9. Breyite is the second most abundant mineral inclusion after ferropericlase in diamonds of super-deep origin. The occurrence of breyite has been widely presumed to be a strong indication of lower mantle (=670 km depth) or at least lower transition zone (=520 km depth) origin of both the host diamond and the inclusion suite. In this work, we demonstrate through different formation scenarios that the finding of breyite alone in a diamond is not a reliable indicator of the formation depth in the transition zone or in the lower mantle and that accompanying paragenetic phases such as ferropericlase together with MgSiO3 are needed.
DS202107-1092
2021
Brennan, D.T., Li, Z-X., Rankenburg, K., Evans, N., Link, P.K.Recalibrating Rodinian rifting in the northwestern United States.Geology Today, Vol. 49, pp. 617-622.United States, Washingtongeochronology

Abstract: A lack of precise age constraints for Neoproterozoic strata in the northwestern United States (Washington State), including the Buffalo Hump Formation (BHF), has resulted in conflicting interpretations of Rodinia amalgamation and breakup processes. Previous detrital zircon (DZ) studies identified a youngest ca. 1.1 Ga DZ age population in the BHF, interpreted to reflect mostly first-cycle sourcing of unidentified but proximal magmatic rocks intruded during the amalgamation of Rodinia at ca. 1.0 Ga. Alternatively, the ca. 1.1 Ga DZ population has been suggested to represent a distal source with deposition occurring during the early phases of Rodinia rifting, more than 250 m.y. after zircon crystallization. We combined conventional laser-ablation split-stream analyses of U-Pb/Lu-Hf isotopes in zircon with a method of rapid (8 s per spot) U-Pb analysis to evaluate these opposing models. Our study of ?2000 DZ grains from the BHF identified for the first time a minor (?1%) yet significant ca. 760 Ma population, which constrains the maximum depositional age. This new geochronology implies that the BHF records early rift deposition during the breakup of Rodinia and correlates with sedimentary rocks found in other late Tonian basins of southwestern Laurentia.
DS202103-0370
2021
Brennan, M.C., Fischer, R.A,m Couper, S., Miyagi, L., Antonangeli, D., Morard, G.High-pressure deformation of iron-nickel-silicon alloys and implications for Earth's inner core.Journal of Geophysical Research, Solid Earth, https://eartharxiv.org /repository/ view/1694/ 21p. PdfMantleGeophysics - seismics

Abstract: The inner core is a Moon?sized ball of solid metal at the very center of the Earth. Vibrations from earthquakes move faster through the inner core if they travel parallel to Earth's axis (the line between the North and South Poles) than if they travel parallel to the Equator. This probably means that the grains of metal in the inner core are themselves aligned with Earth's axis. Previous studies determined that this alignment likely happened after the inner core had formed, but those experiments were done on pure iron, whereas the inner core is mostly iron but also contains other elements. We did experiments at high pressures and temperatures on a more realistic core metal containing iron, nickel, and silicon. We found that this metal would be much stronger than pure iron at inner core pressures and temperatures; it is still possible for it to produce a north-south alignment, but it is much more difficult for it to do so. This could mean that the alignment occurred while the inner core was forming (rather than afterward), which might change how we think about the forces present in the deep Earth today.
DS202111-1759
2021
Britvin, S., Vlasenko, N.S., Aslandukov, A., Aslandova, A., Dubovinsky, L., Gorelova, L.A., Krzhizhanvskaya, M.G., Vereshchagin, O.S., Bocharov, V.N., Shelukina, Y.S., Lozhkin, M.S., Zaitsev, A.N., Nestola, F.Natural cubic perovskite, Ca(Ti,Si,Cr) O 3-delta, a versatile potential host rock-forming and less common elements up to Earth's mantle pressure.American Mineralogist, doi:10.2138/am-2022-8186 in pressMantleperovskite

Abstract: Perovskite, CaTiO3, originally described as a cubic mineral, is known to have a distorted (orthorhombic) crystal structure. We herein report on the discovery of natural cubic perovskite. This was identified in gehlenite rocks occurring in a pyrometamorphic complex of the Hatrurim Formation (the Mottled Zone), in the vicinity of the Dead Sea, Negev Desert, Israel. The mineral is associated with native ?-(Fe,Ni) metal, schreibersite (Fe3P) and Si-rich fluorapatite. The crystals of this perovskite reach 50 ?m in size and contain many micron sized inclusions of melilite glass. The mineral contains significant amounts of Si substituting for Ti (up to 9.6 wt.% SiO2) corresponding to 21 mol.% of the davemaoite component (cubic perovskite-type CaSiO3), in addition to up to 6.6 wt.% Cr2O3. Incorporation of trivalent elements results in the occurrence of oxygen vacancies in the crystal structure; this being the first example of natural oxygen-vacant ABO3 perovskite with the chemical formula Ca(Ti,Si,Cr)O3-? (? ~ 0.1). Stabilization of cubic symmetry (space group Pm?3m) is achieved via the mechanism not reported so far for CaTiO3, namely displacement of an oxygen atom from its ideal structural position (site splitting). The mineral is stable at atmospheric pressure to 1250±50 °C; above this temperature its crystals fuse with the embedded melilite glass, yielding a mixture of titanite and anorthite upon melt solidification. The mineral is stable upon compression to at least 50 GPa. The a lattice parameter exhibits continuous contraction from 3.808(1) Å at atmospheric pressure to 3.551(6) Å at 50 GPa. The second-order truncation of the Birch-Murnaghan equation of state gives the initial volume V0 equal to 55.5(2) Å3 and room temperature isothermal bulk modulus K0 of 153(11) GPa. The discovery of oxygen-deficient single perovskite suggests previously unaccounted ways for incorporation of almost any element into the perovskite framework up to pressures corresponding to those of the Earth’s mantle.
DS202108-1275
2021
Broom-Fendley, S., Elliott, H.A.L., Beard, C.D., Wall, F., Armitage, P.E.B., Brady, A.E., Deady, A.E., Dawes, W.Enrichment of heavy REE and Th in carbonatite-derived fenite breccia.Geological Magazine, in press available Africa, Malawideposit - Songwe Hill

Abstract: Enrichment of the heavy rare earth elements (HREE) in carbonatites is rare as carbonatite petrogenesis favours the light (L)REE. We describe HREE enrichment in fenitized phonolite breccia, focusing on small satellite occurrences 1-2 km from the Songwe Hill carbonatite, Malawi. Within the breccia groundmass, a HREE-bearing mineral assemblage comprises xenotime, zircon, anatase/rutile and minor huttonite/thorite, as well as fluorite and apatite. A genetic link between HREE mineralization and carbonatite emplacement is indicated by the presence of Sr-bearing carbonate veins, carbonatite xenoliths and extensive fenitization. We propose that the HREE are retained in hydrothermal fluids which are residually derived from a carbonatite after precipitation of LREE minerals. Brecciation provides a focusing conduit for such fluids, enabling HREE transport and xenotime precipitation in the fenite. Continued fluid-rock interaction leads to dissolution of HREE-bearing minerals and further precipitation of xenotime and huttonite/thorite. At a maximum Y content of 3100 µg g?1, HREE concentrations in the presented example are not sufficient to constitute ore, but the similar composition and texture of these rocks to other cases of carbonatite-related HREE enrichment suggests that all form via a common mechanism linked to fenitization. Precipitation of HREE minerals only occurs where a pre-existing structure provides a focusing conduit for fenitizing fluids, reducing fluid - country-rock interaction. Enrichment of HREE and Th in fenite breccia serves as an indicator of fluid expulsion from a carbonatite, and may indicate the presence of LREE mineralization within the source carbonatite body at depth.
DS202106-0925
2021
Broom-Findley, S., Siegfried, P.R., Wall, F., O'Neill, M., Brooker, R.A., Fallon, E.K., Pickles, J.R., Banks, D.A.The origin and composition of carbonatite-derived carbonate bearing fluorapatite deposits.Mineralium Deposita, Vol. 56, pp. 863-884.Globaldeposit - Kovdor, Sokli, Bukusu, Catalao 1, Glenover

Abstract: Carbonate-bearing fluorapatite rocks occur at over 30 globally distributed carbonatite complexes and represent a substantial potential supply of phosphorus for the fertiliser industry. However, the process(es) involved in forming carbonate-bearing fluorapatite at some carbonatites remain equivocal, with both hydrothermal and weathering mechanisms inferred. In this contribution, we compare the paragenesis and trace element contents of carbonate-bearing fluorapatite rocks from the Kovdor, Sokli, Bukusu, Catalão I and Glenover carbonatites in order to further understand their origin, as well as to comment upon the concentration of elements that may be deleterious to fertiliser production. The paragenesis of apatite from each deposit is broadly equivalent, comprising residual magmatic grains overgrown by several different stages of carbonate-bearing fluorapatite. The first forms epitactic overgrowths on residual magmatic grains, followed by the formation of massive apatite which, in turn, is cross-cut by late euhedral and colloform apatite generations. Compositionally, the paragenetic sequence corresponds to a substantial decrease in the concentration of rare earth elements (REE), Sr, Na and Th, with an increase in U and Cd. The carbonate-bearing fluorapatite exhibits a negative Ce anomaly, attributed to oxic conditions in a surficial environment and, in combination with the textural and compositional commonality, supports a weathering origin for these rocks. Carbonate-bearing fluorapatite has Th contents which are several orders of magnitude lower than magmatic apatite grains, potentially making such apatite a more environmentally attractive feedstock for the fertiliser industry. Uranium and cadmium contents are higher in carbonate-bearing fluorapatite than magmatic carbonatite apatite, but are much lower than most marine phosphorites.
DS202111-1760
2021
Bruno, H., Helibron, M., Strachen, R., Fowler, M., de MorrisonValeriano , C., Bersan, S., Moreira, H., Cutts, K., Dunlop, J., Almeida, R., Almeida, J., Storey, C.Earth's new tectonic regime at the dawn of the Paleozoic: Hf isotope evidence for efficient crustal growth and reworking in the Sao Francisco craton, Brazil.Geology, Vol. 49, 10, pp. 1214-1219. pdfSouth America, Brazilcraton

Abstract: A zircon Hf isotope data set from Archean and Paleoproterozoic magmatic and metasedimentary rocks of the southern São Francisco craton (Brazil) is interpreted as evidence of accretionary and collisional plate tectonics since at least the Archean-Proterozoic boundary. During the Phanerozoic, accretionary and collisional orogenies are considered the end members of different plate tectonic settings, both involving preexisting stable continental lithosphere and consumption of oceanic crust. However, mechanisms for the formation of continental crust during the Archean and Paleoproterozoic are still debated, with the addition of magmatic rocks to the crust being explained by different geodynamic models. Hf isotopes can be used to quantify the proportion of magmatic addition into the crust: positive ?Hf values are usually interpreted as indications of magmatic input from the mantle, whereas crust-derived rocks show more negative ?Hf. We show that the crust of the amalgamated Paleoproterozoic tectonostratigraphic terranes that make up the southern São Francisco craton were generated from different proportions of mantle and crustal isotopic reservoirs. Plate tectonic processes are implied by a consistent sequence of events involving (1) the generation of juvenile subduction-related magmatic arc rocks, followed by (2) collisional orogenesis and remelting of older crust, and (3) post-collisional bimodal magmatism.
DS202104-0567
2021
Brzozowski, M., Samson, I.M., Gagnon, J.E., Linnen, R.L., Good, D.J.Effects of fluid-induced oxidation on the composition of Fe-Ti oxides in the eastern gabbro, Coldwell Complex, Canada: implications for the application of Fe-Ti oxides to petrogenesis and mineral exploration.Mineralium Deposita, Vol. 56, pp. 601-618. pdfCanada, Ontariodeposit - Coldwell

Abstract: Magnetite (mag)-ilmenite (ilm) intergrowths are more common than mag-ulvöspinel (usp) intergrowths in mafic-ultramafic Ni-Cu-PGE systems, yet the former has no known solid solution. The most accepted model for the formation of mag-ilm intergrowths in terrestrial environments is fluid-induced oxidation of mag-usp assemblages by oxygen in water. In this study, we re-examine this model in light of the fact that crustal fluids have very low pO2 and that mag-ilm intergrowths commonly occur in rocks that show little or no evidence of hydrothermal alteration. We also characterize the chemical changes that occurred during the formation of mag-ilm intergrowths and how they affect the use of Fe-Ti oxide chemistry for petrogenesis and mineral exploration. In the Eastern Gabbro, Coldwell Complex, a continuum of Fe-Ti oxide intergrowths occur ranging from cloth (mag-usp) to trellis (mag-ilm) types. Trellis-textured intergrowths have higher bulk Fe3+:Fe2+ ratios and are predominantly enriched not only in some multivalent (Ge, Mo, W, Sn) elements, but also in Cu and Ga, consistent with their formation via oxidation by a metal-rich fluid. These compositional changes are significant relative to typical elemental abundances in Fe-Ti oxides and could potentially lead to erroneous interpretations regarding primary magmatic processes if they are not taken into consideration. The irregular distribution of the intergrowths throughout the Eastern Gabbro suggests that different rock series and mineralized zones experienced variable degrees of fluid-induced oxidation. It is proposed that C in CO2 rather than O2 in water could potentially be an important oxidizing agent in mafic systems: 9Fe2+2TiO4+0.75CO2+1.5H2O?9Fe2+TiO3+3Fe3+2Fe2+O4+0.75CH4. The applicability of this model is supported by the common occurrence of CO2 and CH4 in fluid inclusions in mafic rocks.
DS202104-0568
2021
Brzozowski, M.J., Samson, I.M., Gagnon, J.E., Good, D.J., Linnen, R.L.Oxide mineralogy and trace element chemistry as an index to magma evolution and Marathon-type mineralization in the eastern gabbro of the alkaline Coldwell Complex, Canada.Mineralium Deposita, Vol. 56, pp. 621-642. pdfCanada, Ontariodeposit - Coldwell

Abstract: The Eastern Gabbro of the alkaline Coldwell Complex, Canada, represents a Ni-poor conduit-type system that comprises two rock series, the Layered Series and Marathon Series, which intruded into a metabasalt package. Based on distinct variations in magnetite compatible (e.g., Ni, Cr) and incompatible (e.g., Sn, Nb) elements in Fe-Ti oxide intergrowths, the metabasalts, Layered Series, and Marathon Series must have crystallized from magmas that originated from compositionally distinct sources. Of these rock units, the metabasalts crystallized from a more primitive melt than the Layered Series as Fe-Ti oxides in the former have higher concentrations of magnetite-compatible elements. Unlike the metabasalts and Layered Series, the Marathon Series crystallized from multiple, compositionally distinct magmas as Fe-Ti oxides in this series exhibit large variations in both magnetite compatible and incompatible elements. Accordingly, the various rock types of the Marathon Series cannot be related by fractional crystallization of a single batch of magma. Rather, the magmas from which the rock types crystallized had to have interacted to variable degrees with a late input of more primitive melt. The degree of this magma interaction was likely controlled by the geometry of the conduit and the location of emplacement given that Fe-Ti oxides in the oxide-rich rocks occur in pod-like bodies and exhibit no compositional evidence for magma mixing. Mirrored variations in magnetite compatible and incompatible elements in Fe-Ti oxides in the Footwall Zone, Main Zone, and W Horizon of the Marathon Cu-PGE deposit indicate that these zones could not have formed from a single, evolving magma, but rather multiple batches of compositionally distinct magmas. Fe-Ti oxides exhibit no compositional difference between those hosted by barren and mineralized rock. This is likely because sulfide liquated at depth in all of the magmas from which the Marathon Series crystallized. The composition of Fe-Ti oxides in the Eastern Gabbro fall outside of the compositional fields for Ni-Cu mineralization defined by Dupuis and Beaudoin (Mineral Deposita 46:319-335, 2011) and Ward et al. (J Geochem Explor 188:172-184, 2018) demonstrating that their discrimination diagrams can distinguish between Ni-rich and Ni-poor systems that contain disseminated and massive sulfides.
DS202104-0569
2021
Buccione, R., Kechiched, R., Mongelli, G., Sinisi, R.REEs in the North Africa P-bearing deposits, paleoenvironments, and economic perspectives: a review.MDPI Minerals, Vol. 11, 27p. PdfAfrica, Algeria, Tunisia, MoroccoREE

Abstract: A review of the compositional features of Tunisia, Algeria, and Morocco phosphorites is proposed in order to assess and compare the paleoenvironmental conditions that promoted the deposit formation as well as provide information about their economic perspective in light of growing worldwide demand. Since these deposits share a very similar chemical and mineralogical composition, the attention was focused on the geochemistry of rare earth elements (REEs) and mostly on ?REEs, Ce and Eu anomalies, and (La/Yb) and (La/Gd) normalized ratios. The REEs distributions reveal several differences between deposits from different locations, suggesting mostly that the Tunisian and Algerian phosphorites probably were part of the same depositional system. There, sub-reducing to sub-oxic conditions and a major REEs adsorption by early diagenesis were recorded. Conversely, in the Moroccan basins, sub-oxic to oxic environments and a minor diagenetic alteration occurred, which was likely due to a different seawater supply. Moreover, the drastic environmental changes associated to the Paleocene-Eocene Thermal Maximum event probably influenced the composition of Northern African phosphorites that accumulated the highest REEs amounts during that span of time. Based on the REEs concentrations, and considering the outlook coefficient of REE composition (Koutl) and the percentage of critical elements in ?REEs (REEdef), the studied deposits can be considered as promising to highly promising REE ores and could represent a profitable alternative source for critical REEs.
DS202112-1921
2021
Buikin, A.J., Hopp, J., Verchovsky, A., Trieloff, M.The sources and evolution of fluid phases of Guli Massif carbonatites ( West Siberia): summarizing of noble gases, N2, CO2, H2O stepwise crushing data.Petrology, Vol. 29, 6, pp. 657-675. pdfRussia, Siberiadeposit - Guli Massif

Abstract: Here we present summarizing of isotopic compositions and element ratios of noble gases, nitrogen, carbon and hydrogen in carbonatites of different generations of the Guli massif (West Siberia, Russia) obtained by stepwise crushing. The data point to the subcontinental lithospheric mantle (SCLM) as a primary source of the fluid phase in Guli carbonatites. However, the estimated 40Ar/36Ar ratio in the Guli mantle source of about 5400 is similar to the Kola plume value of 5000 ± 1000 (Marty et al., 1998). One explanation of such a low estimated 40Ar/36Ar ratio in the mantle end-member with SCLM type helium (4??/3?? ~ 120000) and neon (21N?/22N?mantle ~ 0.7) is an admixture of atmospheric argon to the local mantle source. This assumption is supported by the Ar-Ne systematics as well as by the data for hydrogen isotopic composition. Early carbonatite differs significantly from the later ones by the concentration of highly volatile components, as well as by the isotopic compositions of carbon (CO2), argon, and hydrogen (H2O). The mantle component dominated in fluids at the early formation stages of the Guli massif rocks, whereas the late stages of carbonatite formation were characterized by an additional fluid source, which introduced atmospheric argon and neon, and most likely a high portion of CO2 with isotopically heavy carbon. The argon-neon-hydrogen isotope systematics suggest that the most plausible source of these late stage fluids are high temperature paleometeoric waters. The absence of a plume signature could be explained in terms that Guli carbonatites have been formed at the waning stage of plume magmatic activity with an essential input of SCLM components.
DS202109-1455
2021
Buono, G., Fanara, S., Macedonio, G., Palladino, D.M., Petrosino, P., Sottili, G., Pappalardo, L.Dynamics of degassing in evolved alkaline magmas: petrological, experimental and theoretical insights.Earth Science Reviews , Vol. 211, 103402, 23p. PdfMantlegeodynamics

Abstract: In the last few decades, advanced monitoring networks have been extended to the main active volcanoes, providing warnings for variations in volcano dynamics. However, one of the main tasks of modern volcanology is the correct interpretation of surface-monitored signals in terms of magma transfer through the Earth's crust. In this frame, it is crucial to investigate decompression-induced magma degassing as it controls magma ascent towards the surface and, in case of eruption, the eruptive style and the atmospheric dispersal of tephra and gases. Understanding the degassing behaviour is particularly intriguing in the case of poorly explored evolved alkaline magmas. In fact, these melts frequently feed hazardous, highly explosive volcanoes (e.g., Campi Flegrei, Somma-Vesuvius, Colli Albani, Tambora, Azores and Canary Islands), despite their low viscosity that usually promotes effusive and/or weakly explosive eruptions. Decompression experiments, together with numerical models, are powerful tools to examine magma degassing behaviour and constrain field observations from natural eruptive products and monitoring signals. These approaches have been recently applied to evolved alkaline melts, yet numerous open questions remain. To cast new light on the degassing dynamics of evolved alkaline magmas, in this study we present new results from decompression experiments, as well as a critical review of previous experimental works. We achieved a comprehensive dataset of key petrological parameters (i.e., 3D textural data for bubbles and microlites using X-ray computed microtomography, glass volatile contents and nanolite occurrence) from experimental samples obtained through high temperature-high pressure isothermal decompression experiments on trachytic alkaline melts at super-liquidus temperature. We explored systematically a range of final pressures (from 200 to 25 MPa), decompression rates (from 0.01 to 1 MPa s?1), and volatile (H2O and CO2) contents. On these grounds, we integrated coherently literature data from decompression experiments on evolved alkaline (trachytic and phonolitic) melts under various conditions, with the aim to fully constrain the degassing mechanisms and timescales in these magmas. Finally, we simulated numerically the experimental conditions to evaluate strengths and weaknesses in decrypting degassing behaviour from field observations. Our results highlight that bubble formation in evolved alkaline melts is primarily controlled by the initial volatile (H2O and CO2) content during magma storage. In these melts, bubble nucleation needs low supersaturation pressures (? 50-112 MPa for homogeneous nucleation, ? 13-25 MPa for heterogeneous nucleation), resulting in high bubble number density (~ 1012-1016 m?3), efficient volatile exsolution and thus in severe rheological changes. Moreover, the bubble number density is amplified in CO2-rich melts (mole fraction XCO2 ? 0.5), in which continuous bubble nucleation predominates on growth. These conditions typically lead to highly explosive eruptions. However, moving towards slower decompression rates (? 10?1 MPa s?1) and H2O-rich melts, permeable outgassing and inertial fragmentation occur, promoting weakly explosive eruptions. Finally, our findings suggest that the exhaustion of CO2 at deep levels, and the consequent transition to a H2O-dominated degassing, can crucially enhance magma vesiculation and ascent. In a hazard perspective, these constraints allow to postulate that time-depth variations of unrest signals could be significantly weaker/shorter (e.g., minor gas emissions and short-term seismicity) during major eruptions than in small-scale events.
DS202110-1604
2021
Burness, S., Thomassot, E., Smart, K., Tappe, S.Sulphur isotopes in sulphides from cratonic mantle eclogites: a glimpse of volatile recycling in ancient subduction zones.Earth and Planetary Science Letters, Vol. 572, 1, 117118Africa, South Africadeposit - Premier, Roberts Victor, Jagersfontein

Abstract: Multiple sulphur isotopic compositions of sulphides from Kaapvaal craton mantle eclogites allow to elucidate the recycling of sulphur into the deep Earth and to differentiate between recycled crust and mantle origins of eclogite-hosted sulphides, including the precious metals that they capture. We present multiple sulphur isotope ratio measurements by secondary ion mass spectrometry for sulphides from a collection of mantle-derived eclogite xenoliths from Proterozoic and Mesozoic kimberlite occurrences in South Africa (Premier, Roberts Victor, Jagersfontein). Previous work established that the host eclogites have elemental and oxygen isotopic compositions in support of seawater-altered oceanic lithosphere protoliths, and for many of these xenolith suites Archean ages have been suggested. The eclogite-hosted sulphides have values from ?5.7 to ‰, with the upper end of this wide range representing the highest-ever recorded composition of material derived from the Earth's mantle. The values range from ?0.29 to ‰ and do not record significant mass-independent sulphur isotope fractionation, i.e., there is no compelling S-MIF signature. Most of the sulphide grains have values that fall within a range between ?6 and ‰, and they probably retain an isotopic record of sulphides that formed originally within altered oceanic crust. In contrast, the highly positive values from +13 to ‰ detected in sulphide grains from a single eclogite xenolith are similar to those of marine sulphates, which were probably a minor sulphur component of the oceanic crustal protolith. The lack of a significant S-MIF signature in the eclogitic sulphides that show evidence for a recycled crust origin implies that this sulphur component stems from a post-Archean surficial reservoir. This finding suggests that the cratonic mantle eclogites may have formed from post-Archean oceanic crust (e.g., Paleoproterozoic eclogite protoliths), or - as is preferred here - the ‘surficial’ sulphur was introduced into the cratonic root during relatively young metasomatic events and is thus unrelated to eclogite petrogenesis and Archean continent formation.
DS202101-0002
2020
Carniel, L.C., Conceicao, R.V., Klemme, S., Berndt,J., Jalowitzki, T.Origin and redox conditions of the Rosario-6 alnoite of southern Brazil: implications for the state of the mantle during Gondwana breakup.Lithos, Vol. 376-377, 105751, 13p. PdfSouth America, Brazildeposit - Rosario do Sul

Abstract: The Rosário-6 alnöite is an alkaline occurrence that belongs to the Rosário do Sul kimberlitic field, situated in the south-eastern edge of the Paraná Basin, in the South of Brazil, and erupted concomitant or just after the volcanism of the Paraná-Etendeka Large Igneous Province (LIP). Following recent published nomenclature, Rosário-6 was classified as a kimberlite from a deep mantle source with a distinctive inequigranular texture resulting from the presence of olivine macrocrysts set in a finer-grained matrix. Trace element compositions of olivine, monticellite, spinel, phlogopite, perovskite and apatite show an enrichment of Nb, Ce, Ta and U, which implies that the Rosário-6 mantle source was enriched by recycled oceanic crust. The positive anomalies of Rb, Ba and Sr, the enrichment in LREE, and the negative anomalies of HREE in the Rosário-6 minerals, are indicative of a metasomatic process in the mantle source that could be caused by fluids from recycled oceanic crust. Temperature, pressure and redox conditions (fO2) of Rosário-6 crystallization are estimated from olivine, spinel, perovskite and monticellite compositions: Rosário-6 crystallization temperatures using olivine-spinel geothermobarometry were around 1390(±56)°C at a pressure of 2 GPa, and 1405(±56)°C at 3 GPa with ?NNO = 2.8, at pressures constrained by the silica activity limited by the crystallization of monticellite. Using a perovskite oxybarometer, we obtained a larger range of ?NNO (from -2.8 to 3.4), whereas the monticellite oxybarometer results in fO2 of -2.6 to -0.8 ?NNO units. The fO2 indicate that the mantle source of Rosário-6 at the time of crystallization was possibly oxidized by materials from ancient subduction, which may be the cause for Rosário-6's low potential to carry and preserve diamonds. Horizontal tomographic images derived from P-wave velocity data constrain the thickness of the lithosphere in this region and the overall information indicates that mantle cooling at depths below 200 km may have resulted of an accumulation of oceanic plate slabs from old subduction. The geochemical data in conjunction with the geophysical characterizes the conditions of Rosário-6 mineral crystallization and also the mantle of this part of South America during Gondwana breakup.
DS202106-0926
2021
Casalini, M., Avanzinelli, R., Tommasini, S., Natali, C., Bianchini, G., Prelevic, D., Mattei, M., Conticelli, S.Petrogenesis of Mediterranean lamproites and associated metasomatic events in the postcollisional lithospheric upper mantle.Geological Society, London Special Publication, doi.org/10.1144/SP513-2021-36 49p. PdfEurope, Italy, France, Spain, Serbia, Macedonia, Turkeylamproites

Abstract: High-MgO lamproite and lamproite-like (i.e., lamprophyric) ultrapotassic rocks are recurrent in the Mediterranean and surrounding regions. They are associated in space and time with ultrapotassic shoshonites and high-K calc-alkaline rocks. This magmatism is linked with the geodynamic evolution of the westernmost sector of the Alpine-Himalaya collisional margin, which followed the closure of the Tethys ocean. Subduction-related lamproites, lamprophyres, shoshonites and high-K calc-alkaline suites were emplaced in the Mediterranean region in the form of shallow level intrusions (e.g., plugs, dykes, and laccoliths), and small volume lava flows, with very subordinate pyroclastic rocks, starting from the Oligocene, in the Western Alps (Northern Italy), through the Late Miocene in Corsica (Southern France) and in Murcia-Almeria (South-Eastern Spain), to the Plio-Pleistocene in Southern Tuscany and Northern Latium (Central Italy), in the Balkan peninsula (Serbia and Macedonia), and in the Western Anatolia (Turkey). The ultrapotassic rocks are mostly lamprophyric, but olivine latitic lavas with a clear lamproitic affinity are also found, as well as dacitic to trachytic differentiated products. Lamproite-like rocks range from slightly silica under-saturated to silica over-saturated composition, have relatively low Al2O3, CaO, and Na2O contents, resulting in plagioclase-free parageneses, and consist of abundant K-feldspar, phlogopite, diopsidic clinopyroxene and highly forsteritic olivine. Leucite is generally absent and it is rarely found only in the groudmasses of Spanish lamproites. Mediterranean lamproites and associated rocks share an extreme enrichment in many incompatible trace elements and depletion in High Field Strength Elements and high, and positively correlated Th/La and Sm/La ratios. They have radiogenic Sr and unradiogenic Nd isotope compositions, high 207Pb over 206Pb and high time integrated 232Th/238U. Their composition requires an originally depleted lithospheric mantle source metasomatised by at least two different agents: i) a high Th/La and Sm/La (i.e., SALATHO) component deriving from lawsonite-bearing, ancient crustal domains likely hosted in mélanges formed during the diachronous collision of the northward drifting continental slivers from Gondwana; ii) a K-rich component derived from a recent subduction and recycling of siliciclastic sediments. These metasomatic melts produced a lithospheric mantle source characterised by network of felsic and phlogopite-rich veins, respectively. Geothermal readjustment during post-collisional events induced progressive melting of the different types of veins and the surrounding peridotite generating the entire compositional spectrum of the observed magmas. In this complex scenario, orogenic Mediterranean lamproites represent rocks that characterise areas that were affected by multiple Wilson cycles, as observed in the the Alpine-Himalayan realm.
DS202107-1093
2021
Casalini, M., Avanzinellli, R., Tommasini, S., Natali, C., Bianchini, G., Prelevic, D., Mattei, M., Conticelli, S.Petrogenesis of Mediterranean lamproites and associated rocks: the role of overprinted metasomatic events in the postcollisional lithospheric upper mantle.Geological Society London Special Publication, doi.org/10.1144/SP513-2021-36. pdfMantlelamproite

Abstract: High-MgO lamproite and lamproite-like (i.e., lamprophyric) ultrapotassic rocks are recurrent in the Mediterranean and surrounding regions. They are associated in space and time with ultrapotassic shoshonites and high-K calc-alkaline rocks. This magmatism is linked with the geodynamic evolution of the westernmost sector of the Alpine-Himalaya collisional margin, which followed the closure of the Tethys ocean. Subduction-related lamproites, lamprophyres, shoshonites and high-K calc-alkaline suites were emplaced in the Mediterranean region in the form of shallow level intrusions (e.g., plugs, dykes, and laccoliths), and small volume lava flows, with very subordinate pyroclastic rocks, starting from the Oligocene, in the Western Alps (Northern Italy), through the Late Miocene in Corsica (Southern France) and in Murcia-Almeria (South-Eastern Spain), to the Plio-Pleistocene in Southern Tuscany and Northern Latium (Central Italy), in the Balkan peninsula (Serbia and Macedonia), and in the Western Anatolia (Turkey). The ultrapotassic rocks are mostly lamprophyric, but olivine latitic lavas with a clear lamproitic affinity are also found, as well as dacitic to trachytic differentiated products. Lamproite-like rocks range from slightly silica under-saturated to silica over-saturated composition, have relatively low Al2O3, CaO, and Na2O contents, resulting in plagioclase-free parageneses, and consist of abundant K-feldspar, phlogopite, diopsidic clinopyroxene and highly forsteritic olivine. Leucite is generally absent and it is rarely found only in the groudmasses of Spanish lamproites. Mediterranean lamproites and associated rocks share an extreme enrichment in many incompatible trace elements and depletion in High Field Strength Elements and high, and positively correlated Th/La and Sm/La ratios. They have radiogenic Sr and unradiogenic Nd isotope compositions, high 207Pb over 206Pb and high time integrated 232Th/238U. Their composition requires an originally depleted lithospheric mantle source metasomatised by at least two different agents: i) a high Th/La and Sm/La (i.e., SALATHO) component deriving from lawsonite-bearing, ancient crustal domains likely hosted in mélanges formed during the diachronous collision of the northward drifting continental slivers from Gondwana; ii) a K-rich component derived from a recent subduction and recycling of siliciclastic sediments. These metasomatic melts produced a lithospheric mantle source characterised by network of felsic and phlogopite-rich veins, respectively. Geothermal readjustment during post-collisional events induced progressive melting of the different types of veins and the surrounding peridotite generating the entire compositional spectrum of the observed magmas. In this complex scenario, orogenic Mediterranean lamproites represent rocks that characterise areas that were affected by multiple Wilson cycles, as observed in the the Alpine-Himalayan realm.
DS202110-1605
2021
Chakaoumakos, B.C., Parise, J.B.Probing phase transitions and magnetism in minerals with neutrons.Elements, Vol. 17, pp. 181-188.Mantlegeophysics - magnetics, HP

Abstract: The development of sophisticated sample environments to control temperature, pressure, and magnetic field has grown in parallel with neutron source and instrumentation development. High-pressure apparatus, with high- and low-temperature capability, novel designs for diamond cells, and large volume presses are matched with next-generation neutron sources and moderator designs to provide unprecedented neutron beam brightness. Recent developments in sample environments are expanding the pressure-temperature space accessible to neutron scattering experiments. Researchers are using new capabilities and an increased understanding of the fundamentals of structural and magnetic transitions to explore new territories, including hydrogenous minerals (e.g., ices and hydrates) and magnetic structural phase diagrams.
DS202103-0371
2021
Chakhmouradian, A.R., Dahlgren, S.Primary inclusions of burbankite in carbonatites from the Fen complex, southern Norway.Mineralogy and Petrology, doi.org/10.1007/ s00710-021-00736-0 11p. PdfEurope, Norwaycarbonatite

Abstract: Carbonatites in the Fen intrusive complex (southern Norway) contain abundant burbankite (confirmed by Raman microspectroscopy) as inclusions in calcite, dolomite and, less commonly, fluorapatite and pyrochlore. Typically the inclusions occur in the core of calcite or dolomite grains relatively unaffected by subsolidus processes, and are associated with Fe-poor dolomite or Sr-rich calcite, respectively. Burbankite does not exceed 30?×?50 ?m in size and is characteristically absent from the peripheral areas of carbonate grains affected by recrystallization or interaction with fluids. Compositionally, the mineral falls within the following range: (Na1.51-2.16Ca0.58-1.21)(Sr1.50-2.42Ca0.28-0.57LREE0.05-0.64Ba0.06-0.41)(CO3)5 and contains low Th, but no detectable Mg, Fe or F (LREE?=?light rare-earth elements: Ce?>?La?>?Nd?>?Pr?>?Sm). Burbankite inclusions at Fen are interpreted as primary and indicative of Na enrichment in their parental carbonatitic magma. Dissociation of burbankite during subsolidus re-equilibration of its host phases with fluids undoubtedly served as one of the sources of LREE for the development of late-stage mineralization in the Fen complex.
DS202111-1761
2020
Chanturia, V.A., Dvoichenkova, G.P., Morozov, V.V., Kovalchuk, O.E., Podkamennyi, Yu.A., Yakolev, V.N.Selective attachment of luminophore-bearing emulsion at diamonds - mechanism analysis and mode selection.Journal of Mining Science, Vol. 56, 1, pp. 96-103, 8p. PdfRussialuminescence

Abstract: The authors present an efficient modification method of X-ray fluorescence separation with mineral and organic luminophores used to adjust spectral and kinetic characteristics of anomalously luminescent diamonds. The mechanism of attachment of luminophores at diamonds and hydrophobic minerals is proved, including interaction between the organic component of emulsions and the hydrophobic surface of a treated object and the concentration of insoluble luminophore grains at the organic and water interface. Selective attachment of the luminophore-bearing organic phase of emulsion at the diamond surface is achieved owing to phosphatic dispersing agents. Tri-sodium phosphate and sodium hexametaphosphate added to emulsion reduce attachment of the luminophore-bearing organic phase at the surface of kimberlite minerals. It is shown that phosphate concentration of 1.0-1.5 g/l modifies and stabilizes spectral and kinematic parameters of kimberlite mineral on the level of initial values. This mode maintains the spectral and kinematic characteristics of anomalously luminescent diamonds at the wanted level to ensure extraction of diamonds to concentrate.
DS202104-0570
2021
Charles, N., Tuduri, J., Lefebvre, G., Pourret, O., Gaillard, F., Goodenough, K.Ressources en terres rares de l'Europe et du Groenland: un potential minier remarquable mais tabou?In: Boulvais, P., Decree, S. Eds. Ressources metalliques: cadre geodynamique et exemples remarquables. ISTE Science Pub. Researchgate, 97p. pdfEurope, GreenlandREE
DS202105-0758
2021
Chatterjee, N.Origin of the primitive, strongly SiO2-undersaturated alkalic rocks from the Deccan Traps by low degree mantle melting and high pressure fractional crystallization.Contributions to Mineralogy and Petrology, 176, 21p. PdfIndiaalkaline rocks

Abstract: Strongly SiO2-undersaturated alkalic rocks (Mg#?>?50, SiO2???45 wt%, Na2O?+?K2O???3 wt%) occur in three early-stage (Sarnu-Dandali, Mundwara, Bhuj) and one late-stage (Murud-Janjira) rift-associated volcanic complexes in the Cretaceous-Paleogene Deccan Traps flood basalt province of India. Thermobarometry based on clinopyroxene-liquid equilibrium suggests that they mostly crystallized beneath the Moho at?~?15 kbar/1270 °C to?~?11-12 kbar/1115-1156 °C pressures and temperatures. Primary magma compositions in equilibrium with lherzolite were estimated through reverse fractionation calculations by incrementally adding equilibrium phases to the rocks in olivine:clinopyroxene:spinel:phlogopite?=?12:68:20:15 proportions at low temperatures followed by olivine:clinopyroxene:spinel?=?12:68:20 proportions at higher temperatures. A comparison of the primary magmas with experimentally generated melts shows that their compositions are consistent with an origin from garnet lherzolite sources with?
DS202111-1762
2021
Chaurasiya, S.K., Markamdeya, R.Utilization of kimberlite as binder for iron ore pellet making.Transactions Indian Institute of Metallurgy, Vol. 74, 8, pp. 1969-1977. 9p. PdfIndiadeposit - Panna

Abstract: During diamond mining at Panna Mines [India], a huge amount of tailing (Kimberlite) is generated. About 6 Million Tonnes is accumulated and stored near mine site and about 0.9 Million Tonnes of tailings are further being generated each year. Till now, no established method is available for utilization of this material, effective utilization is essential for sustainable diamond mining. The Kimberlite contains about 32% [MgO?+?CaO] and 2% Al2O3, and rest are primarily silica, iron oxide [Fe2O3] and LOI. Initially, attempts were made to utilize Kimberlite as flux in iron ore pellet making; however, during green pellet making, it was observed that strength of pellets improved with higher dosages of Kimberlite. Accordingly, further studies were taken to replace conventional binder bentonite with binder prepared from Kimberlite. The iron ore pellet produced with Kimberlite-based binder have exhibited better physical and metallurgical characteristics than pellets produced with conventional binders (Bentonite).
DS202102-0177
2019
Chayka, I., Izokh, A.E., Vasyukova, E.A.Can low-titanium lamproite magmas produce ore deposits? Evidence from Mesozoic Aldan Shield lamproites. *** note dateResearchgate Conference paper, 335395794 5p. PdfRussialamproites

Abstract: Lamproites and lamprophyres from Ryabinovoye gold deposit (Aldan Shield, Siberia) were studied. We demonstrate that these rocks, varying from Ol-Di-Phl-lamproites to syenite-porphyries, form a continuous series of lamproite magma differentiation. At the stage of phlogopite and clinopyroxene crystallization, silicate-carbonate and then carbonate-salt immiscibilities occur. A suggestion is that during these processes LREE, Y, U, Sr and Ba distribute to a phosphate-fluoride fraction and probably accumulate in apatite-fluorite gangues. Based on our results and considering existing data onore-bearing massifs within Central Aldan (lnagli, Ryabinoviy) and also of the Nam-Xe ore-bearing province (Vietnam), we concluded that Au, PGE and Th-U-Ba-REE deposits can be genetically connected with low-titanium lamproite magmas.
DS202102-0178
2020
Chayka, I., Kamenetsky, V.S., Vasilyev, Y., Prokopyev, I.R.Spinel-group minerals in peridotites of the Guli and Bor-Uryakh intrusions ( Meimecha-Kotuy Province, northern Siberia).SGEM Conference 20th., doi:10.5593/ sgem2020/1.1. /s01.038Russia, Siberiaperidotites

Abstract: The Guli and Bor-Uryakh massifs, a part of the Siberian Large igneous province (LIP) are mafic-ultramafic intrusive complexes, withstrongalkaline affinity. They contain deposits of apatite and arealsoknown to be source rocks ofOs-Ir-Ruplacers.These massifs are of great interest for petrologists worldwide, as they are composed of an unusual variety of rocks (dunites/olivinites, shonkinites, melilitites, alkali syenites and carbonatites) and being coeval with Siberian trap volcanic rocks, includingdiamondiferous kimberlites. Since mineralogical approaches based on spinel-group minerals have been proved to be efficient in constraining origin of the ultramafics, we present the first descriptive study of chromite and magnetite mineralization, observed in olivine-dominated rocks of the Guli and Bor-Uryakh intrusions. In dunites of Guli massif spinel-group minerals are dominated by Mg-poor chromite (FeMg)Cr2O4and Cr-Ti-rich magnetiteFeFe2O4, while in Bor-Uryakh massif spinel-group minerals are predominantly magnetite with only minor Mg-poor chromite.These minerals form either small euhedral inclusions in olivine or largesubhedral to anhedral grains in serpentinized fractures and interstitial space. The lattertype of grainscan have intricated irregular shapeand contain inclusions. We also observed abundant Cr-magnetite lamellae in olivine and chromite/magnetite micro-grains within olivine-hosted multiphase inclusions.Spinel (MgAl2O4) is occasionally found in intergrowths with chromite and magnetite.The obtained data show that spinel-group minerals in the massifsdo not correspond to primary-magmatic varieties and suggestextensive alteration during post-magmatic processes. Textural and chemical evidenceof substantial modification of initially-cumulative lithologies of Guli and Bor-Uryakh massifsfavorsmeta-magmatic origin for these massifs.
DS202106-0927
2021
Chen, Q., Liu, S-g., Qiu L., Liao, R-q., Xie, G-Z., Sun, W-d.Enhanced deep carbon cycle marked by the upsurge of silica-undersaturated nephelinitic magmatism at the Proterozoic-Phanerozoic boundary.Journal of Asian Earth Sciences, Vol. 214, 104772, 8p. PdfMantlecarbon

Abstract: The temperature of the upper mantle was a principal factor controlling the style of plate tectonics and influencing magmatism and metamorphism on Earth over geological history. Recent studies emphasized that Earth’s tectonic style has transited into the modern plate tectonics since the late Neoproterozoic, which is characterized by a global network of plate boundaries with deep and cold oceanic plate subduction. However, the consequence of the establishment of modern plate tectonics to Earth’s mantle temperature and deep carbon cycle has not been fully understood. Here we apply statistical analysis on the geochemical data of continental igneous rocks and identify an increased magnitude of nephelinitic volcanism at the end of the Ediacaran. Nephelinitic rocks, a silica-undersaturated high-alkaline rock group, are mostly formed by low-degree melting of carbonated mantle sources. We link their widespread emergence with an enhanced mantle cooling event and a dramatically increased flux of crustal carbonates transporting to the mantle. The rapid cooling of the mantle was ascribed to the onset of modern-style plate tectonics with global-scale cold oceanic and continental subduction since the late Neoproterozoic. The declined upper-mantle temperature could not only favor the low-degree melting but also allow the subduction of carbonates into the deep mantle without decarbonation at shallow depth. Considering the high oxygen fugacity feature of the nephelinitic rocks and some other high-alkaline volcanism, the establishment of modern plate tectonics and thereafter enhanced mantle cooling and deep carbon cycle might contribute to the high-level atmospheric oxygen content during the Phanerozoic.
DS202108-1276
2021
Chen, W., Lu, X.B., Cao, X.F., Yuan, Q., Wang, D.Genetic and ore forming ages of Fe-P-(Ti) oxide deposits associated with mafic-ultramafic-carbonatite complexes in the Kuluketage block, NW China.Australian Journal of Earth Sciences, Vol. 66, 7, pp. 1041-1062.Chinacarbonatite

Abstract: During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe-P-(Ti)-oxide deposits associated with mafic-ultramafic-carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core-rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core-rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U-Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core-rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe-P-Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe-P-(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.
DS202112-1922
2021
Chepurov, A., Sonin, V., Shcheglov, D., Zhimulev, E., Sitnikov, S., Yelisseyev, A., Chepurov, A.Surface porosity of natural crystals after the catalytic hydrogenation.Crystals, Vol. 11, 1341 9p pdfRussiadeposit - Popigai

Abstract: The study of diamond surfaces is traditionally undertaken in geology and materials science. As a sample material, two natural diamond crystals of type Ia were selected, and their luminescence and nitrogen state was characterized. In order to etch the surface catalytic hydrogenation was performed using Fe particles as an etchant. Micromorphology of the surface was investigated by scanning electron and laser confocal microscopy. It was demonstrated that etching occurred perpendicular to the crystal surface, with no signs of tangential etching. The average depth of caverns did not exceed 20-25 ?m with a maximal depth of 40 ?m. It is concluded that catalytic hydrogenation of natural type Ia diamonds is effective to produce a porous surface that can be used in composites or as a substrate material. Additionally, the comparison of results with porous microsculptures observed on natural impact diamond crystals from the Popigai astrobleme revealed a strong resemblance.
DS202110-1606
2021
Chepurov, A., Zhimulev, E., Chepurov, A., Sonin, V.Where did the largest diamonds grow? The experiments on percolation of Fe-Ni melt through olivine matrix in the presence of hydrocarbons.Lithos, Vol. 404-405, 106437, 10p. PdfMantlediamond genesis

Abstract: Recently it was found that large natural diamonds can grow from a metal liquid. One of the principal issues of the proposed hypothesis is the formation of so-called “pockets” filled with Fe-Ni melt and hydrocarbons in the Earth's mantle. The existing models of Fe migration imply percolation of liquid melt through interconnected interstices between silicate minerals, although these models face several fundamental problems in explaining the process of penetration of Fe melt between solid crystalline phases like silicate and oxide minerals. The aim of the present study is to contribute to the mechanism of Fe-Ni melt migration, and to elucidate the evolution of the "pockets" in the presence of hydrocarbons. The experiments were performed using a high-pressure apparatus "BARS" at pressures 3 and 5?GPa, and temperature 1600?°C. A silicate matrix consisting of natural olivine grains was used. The interstices in olivine were filled with anthracene that decomposes under high P-T into a complex hydrocarbon fluid. Percolation of Fe-Ni (64/36?wt%) melt through the interstices was demonstrated which occurred at relatively high rates. The basis of the proposed mechanism is "solubility-enhanced infiltration": Fe-Ni occupies the space filled with light elements or substances that are soluble in the melt. It is suggested that the following simple, but efficient mechanism supports the growth of large diamonds as well as their resorption and storage within silicate mantle of the Earth for a long time.
DS202106-0928
2021
Cherry, J.The future of pink diamonds.Gems&Jewellery, Vol. 30, 1, pp. 32-35.Globalmarkets
DS202111-1763
2021
Chin, E.J., Chilson-Parks, B., Boneh, Y., Hirth, G., Saal, A.E., Hearn, B.C., Hauri, E.H.The peridotite deformation cycle in cratons and the deep impact of subduction.Tectonophysics, Vol. 817, 229029, 22p. PdfUnited States, Wyomingdeposit - Homestead, Williams

Abstract: Xenoliths play a crucial role in interpretation of mantle deformation and geochemistry. The classic work of Mercier and Nicolas (1975) introduced the concept of the peridotite deformation cycle, which connected observed microstructures to a physical sequence of deformation. We revisit Mercier and Nicolas' original concept, bringing in new constraints using large area EBSD maps and associated microstructural datasets, analysis of water contents in nominally anhydrous minerals, and trace element chemistry of pyroxenes and garnets. We apply these techniques to a well-characterized suite of peridotite xenoliths from the Eocene-age Homestead and Williams kimberlites in the northwestern Wyoming Craton. Pyroxene water content and trace element mineral chemistries reveal ubiquitous hydrous metasomatism beneath the craton, most likely linked to the Cenozoic Laramide Orogeny. Homestead xenoliths primarily exhibit coarse protogranular and equigranular textures, B-type olivine fabrics, and generally elevated mineral water contents compared to Williams. Xenoliths from Williams are strongly deformed, with porphyroclastic and transitional textures containing annealed olivine tablets, mostly A-type olivine fabrics, and generally lower mineral water contents. As a whole, mantle from Homestead to Williams reflects a cratonic scale deformation cycle that likely initiated in Laramide times and lasted until the end of orogeny in the Eocene. At Williams, evidence for a rapid deformation “sub-cycle” within the main deformation cycle is preserved in the tablet-bearing xenoliths, corresponding to the enigmatic “transitional” texture of Mercier and Nicolas (1975). Our results suggest that this texture reflects interruption of the main deformation cycle by processes possibly related to a rapidly forming lithospheric instability and generation of the kimberlite magma - offering a new interpretation of this ambiguous peridotite texture. Collectively, our results incorporate typically disparate geochemical and textural datasets on xenoliths to shed new insights into how metasomatism, volatiles, and deformation are connected in the deep cratonic lithosphere.
DS202109-1456
2021
Cho, A.Tiny mirrors could smooth out already revolutionary x-ray lasers.Science Magazine Physics, doi:10.1126/science.abm1196 3p. PdfGlobalXFELS
DS202106-0929
2021
Choi, E., Fiorentini, M.L., Giuliani, A., Foley, S.F., Maas, R., Graham, S.Petrogenesis of Proterozoic alkaline ultramafic rocks in the Yilgarn Craton, western Australia.Gondwana Research, Vol. 93, pp. 197-217. pdfAustraliacarbonatites

Abstract: The Yilgarn Craton and its northern margin contain a variety of petrogenetically poorly defined small-volume alkaline ultramafic rocks of Proterozoic age. This study documents the petrography, mineral and bulk-rock geochemistry and Nd-Hf-Sr-Pb isotope compositions of a selected suite of these rocks. They comprise ~2.03-2.06 Ga ultramafic lamprophyres (UML) and carbonatites from the Eastern Goldfields Superterrane (EGS), ~0.86 Ga UML from Norseman, and orangeites from the Earaheedy Basin, including samples from Jewill (~1.3 Ga), Bulljah (~1.4 Ga) and Nabberu (~1.8-1.9 Ga). The Proterozoic UML and carbonatites from the EGS and Norseman display very consistent chondritic to superchondritic Nd-Hf isotope compositions and trace-element ratios similar to modern OIBs, which are indicative of a common mantle source across this wide alkaline province. These Nd-Hf isotope compositions overlap with the evolution trends of global kimberlites through time, thus suggesting that this mantle source could be deep and ancient as that proposed for kimberlites. Conversely, the orangeites located in the Earaheedy Basin along the northern margin of the Yilgarn Craton display trace element signatures similar to subduction-related calc-alkaline magmas. Taken together with their highly enriched Sr-Nd-Hf isotope compositions, these characteristics indicate an ancient lithospheric mantle source, which was probably metasomatised by subduction-related fluids. As the ages of the Bulljah and Jewill orangeites overlap with the breakup of the Columbia supercontinent, it is proposed that orangeite magmatism was triggered by changes in plate stress conditions associated with this event. This study provides a comprehensive picture of the genesis of Proterozoic alkaline magmatism in the Yilgarn Craton, highlighting the complex tectono-magmatic evolution of this lithospheric block after its assembly in the Archean.
DS202101-0003
2020
Choudhary, S., Sen, K., Kumar, S., Rana, S., Ghosh, S.Forsterite reprecipitation and carbon dioxide entrapment in the lithospheric mantle during its interaction with carbonatitic melt: a case study from the Sung Valley ultramafic-alkaline-carbonatite complex, Meghalaya, NE India.Geological Magazine, doi:1017/S001 6756820000631, 12p.Indiadeposit - Sung Valley

Abstract: Carbonatite melts derived from the mantle are enriched in CO2- and H2O-bearing fluids. This melt can metasomatize the peridotitic lithosphere and liberate a considerable amount of CO2. Experimental studies have also shown that a CO2-H2O-rich fluid can form Fe- and Mg-rich carbonate by reacting with olivine. The Sung Valley carbonatite of NE India is related to the Kerguelen plume and is characterized by rare occurrences of olivine. Our study shows that this olivine is resorbed forsterite of xenocrystic nature. This olivine bears inclusions of Fe-rich magnesite. Accessory apatite in the host carbonatite contains CO2-H2O fluid inclusions. Carbon and oxygen isotopic analyses indicate that the carbonatites are primary igneous carbonatites and are devoid of any alteration or fractionation. We envisage that the forsterite is a part of the lithospheric mantle that was reprecipitated in a carbonatite reservoir through dissolution-precipitation. Carbonation of this forsterite, during interaction between the lithospheric mantle and carbonatite melt, formed Fe-rich magnesite. CO2-H2O-rich fluid derived from the carbonatite magma and detected within accessory apatite caused this carbonation. Our study suggests that a significant amount of CO2 degassed from the mantle by carbonatitic magma can become entrapped in the lithosphere by forming Fe- and Mg-rich carbonates.
DS202103-0372
2021
Choudhary, S., Sen, K., Kumar, S., Rana, S., Ghosh, S.Forsterite reprecipitation and carbon dioxide entrapment in the lithospheric mantle during its interaction with carbonatitic melt: a case study from the Sung Valley ultramafic-alkaline-carbonatite complex, Meghalaya, NE India.Geological Magazine, Vol. 158, 3, pp. 475-486.Indiadeposit - Sung Valley

Abstract: Carbonatite melts derived from the mantle are enriched in CO2- and H2O-bearing fluids. This melt can metasomatize the peridotitic lithosphere and liberate a considerable amount of CO2. Experimental studies have also shown that a CO2-H2O-rich fluid can form Fe- and Mg-rich carbonate by reacting with olivine. The Sung Valley carbonatite of NE India is related to the Kerguelen plume and is characterized by rare occurrences of olivine. Our study shows that this olivine is resorbed forsterite of xenocrystic nature. This olivine bears inclusions of Fe-rich magnesite. Accessory apatite in the host carbonatite contains CO2-H2O fluid inclusions. Carbon and oxygen isotopic analyses indicate that the carbonatites are primary igneous carbonatites and are devoid of any alteration or fractionation. We envisage that the forsterite is a part of the lithospheric mantle that was reprecipitated in a carbonatite reservoir through dissolution-precipitation. Carbonation of this forsterite, during interaction between the lithospheric mantle and carbonatite melt, formed Fe-rich magnesite. CO2-H2O-rich fluid derived from the carbonatite magma and detected within accessory apatite caused this carbonation. Our study suggests that a significant amount of CO2 degassed from the mantle by carbonatitic magma can become entrapped in the lithosphere by forming Fe- and Mg-rich carbonates.
DS202109-1457
2021
Choudhury, A.R., Lahiri-Dutt, K.Extractive capital and multi-scalar environmental politics: interpreting the exit of Rio Tinto from the diamond fields of Central India.Third World Quarterly, Vol. 42, 8, pp. 1770-1787. Indiaeconomics

Abstract: Rio Tinto had been developing a diamond mining project in Madhya Pradesh for a decade when in 2017 it hastily abandoned the project. We analyse this counterintuitive exit through an ethnographic approach nested within a qualitative case study framework. We argue that the exit was caused by multi-scalar politics. Local protests over livelihood and labour issues -pre-emptively rearticulated by regional civil society groups through an ecological ‘framing’ - led to litigation. The national forest bureaucracy posed regulatory hurdles, and a change in the national political regime in 2014 brought to power a party that leveraged national capital of a certain variety, which weakened Rio Tinto’s political position. Lastly, a slump in the global diamond market created economic uncertainties, finally leading to its exit. It has not, however, deterred the government from facilitating investment by Indian mega-corporate houses in mining diamonds, once again ignoring local dissent. Under the current regime in India, the space for activism is increasingly restricted, and that restriction, we contend, can lead to the disarray in strategising alliances and goals between ecological and social justice concerns.
DS202112-1923
2021
Choudhury, P., Nukder, J.A., Cawood, P.A., Bhattacharjee, S., Roy, S., Wainwright, A.N., Nebel, O., Mukherjee, S.Magmatic thickening of crust in non-plate tectonic settings initiated the subaerial rise of Earth's first continents 3.3 to 3.2 billion years ago.PNAS, Vol. 118 (46) e2105746118 doi.org/10.73/pnas.210746118 pdfMantletectonics

Abstract: When and how Earth's earliest continents—the cratons—first emerged above the oceans (i.e., emersion) remain uncertain. Here, we analyze a craton-wide record of Paleo-to-Mesoarchean granitoid magmatism and terrestrial to shallow-marine sedimentation preserved in the Singhbhum Craton (India) and combine the results with isostatic modeling to examine the timing and mechanism of one of the earliest episodes of large-scale continental emersion on Earth. Detrital zircon U-Pb(-Hf) data constrain the timing of terrestrial to shallow-marine sedimentation on the Singhbhum Craton, which resolves the timing of craton-wide emersion. Time-integrated petrogenetic modeling of the granitoids quantifies the progressive changes in the cratonic crustal thickness and composition and the pressure-temperature conditions of granitoid magmatism, which elucidates the underlying mechanism and tectonic setting of emersion. The results show that the entire Singhbhum Craton became subaerial ?3.3 to 3.2 billion years ago (Ga) due to progressive crustal maturation and thickening driven by voluminous granitoid magmatism within a plateau-like setting. A similar sedimentary-magmatic evolution also accompanied the early (>3 Ga) emersion of other cratons (e.g., Kaapvaal Craton). Therefore, we propose that the emersion of Earth’s earliest continents began during the late Paleoarchean to early Mesoarchean and was driven by the isostatic rise of their magmatically thickened (?50 km thick), buoyant, silica-rich crust. The inferred plateau-like tectonic settings suggest that subduction collision-driven compressional orogenesis was not essential in driving continental emersion, at least before the Neoarchean. We further surmise that this early emersion of cratons could be responsible for the transient and localized episodes of atmospheric-oceanic oxygenation (O2-whiffs) and glaciation on Archean Earth.
DS202112-1924
2021
Chowdhury, A.R., Lahiri-Dutt, K.Extractive capital and multi-scalar environmental politics: interpreting the exit of Rio Tinto from the diamond fields of central India.Third World Quarterly, Vol. 42, 8, pp. 1770-1787. pdfIndiaeconomics

Abstract: Rio Tinto had been developing a diamond mining project in Madhya Pradesh for a decade when in 2017 it hastily abandoned the project. We analyse this counterintuitive exit through an ethnographic approach nested within a qualitative case study framework. We argue that the exit was caused by multi-scalar politics. Local protests over livelihood and labour issues -pre-emptively rearticulated by regional civil society groups through an ecological ‘framing’ - led to litigation. The national forest bureaucracy posed regulatory hurdles, and a change in the national political regime in 2014 brought to power a party that leveraged national capital of a certain variety, which weakened Rio Tinto’s political position. Lastly, a slump in the global diamond market created economic uncertainties, finally leading to its exit. It has not, however, deterred the government from facilitating investment by Indian mega-corporate houses in mining diamonds, once again ignoring local dissent. Under the current regime in India, the space for activism is increasingly restricted, and that restriction, we contend, can lead to the disarray in strategising alliances and goals between ecological and social justice concerns.
DS202103-0373
2020
Cimen, O., Corcoran, L., Kuebler, C., Simonetti, S., Simonetti, A.Geochemical stable (O, C, and B) and radiogenic ( Sr, Nd, Pb) isotopic data from the of carbonate hosted mineralization.Eskisehir- Kizilcaoren ( NW Anatolia) and the Malatya-Kuluncak( E-central Anatolia) F-REE-Th deposits, Turkey: implications for natureTurkish Journal of Earth Sciences, Vol. 29, pp. 798-814. pdfEurope, TurkeyREE

Abstract: In Turkey, the largest fluorine (F)-rare earth element (REE)-thorium (Th) deposits are located within the Eski?ehir-K?z?lcaören (north-western Anatolia) and the Malatya-Kuluncak (east-central Anatolia) regions, and these are associated with Oligocene extensional alkaline volcanic and Late Cretecaous-Early Paleocene postcollisional intrusive rocks, respectively. In the K?z?lcaören region, the basement units include the Triassic Karakaya Complex and the Late Cretaceous oceanic units (Neotethyan suture) that are cut and overlain by phonolite and carbonatite intrusions and lava flows. In the Kuluncak region, the plutonic rocks are mainly composed of syenite, quartz syenite, and rare monzonite, and these cut the late-Cretaceous Karap?nar limestone, which hosts the F-REE-Th mineralization in contact zones. A carbonatite sample from the K?z?lcaören region displays both a total rare earth element (TREE) concentration (4795 ppm) and ?11B (-6.83‰) isotope composition consistent with mantle-derived carbonatite; whereas it is characterized by heavier ?13C (+1.43‰) and ?18O (+20.23‰) isotope signatures compared to those for carbonatites worldwide. In contrast, the carbonates which host the F-REE-Th mineralization in the Kuluncak region are characterized by lower TREE concentrations (5.13 to 55.88 ppm), and heavier ?13C (-0.14 to -0.75‰), ?18O (+27.36 to +30.61‰), and ?11B (+5.38 to +6.89‰) isotope ratios compared to mantle-derived carbonatites. Moreover, the combined initial 87Sr/86Sr (0.70584 to 0.70759) and 143Nd/144Nd (0.512238 to 0.512571) isotope ratios for samples investigated here are distinct and much more radiogenic compared to those for carbonatites worldwide, and therefore indicate significant crustal input and/or hydrothermal metasomatic-related alteration. Overall, stable and radiogenic isotope data suggest that the host carbonate rocks for the F-REE-Th mineralization in both the K?z?lcaören and the Kuluncak regions consist of hydrothermally metasomatized carbonatite and limestone, respectively. The mineralization in the K?z?lcaören region may potentially be related to carbonatite magmatism, whereas the mineralization in the Kuluncak region, which most likely formed through interactions between the plutonic rocks and surrounding limestone at contact metamorphism zone, involved hydrothermal/magmatic fluids associated with extensive postcollisional magmatism.
DS202101-0004
2021
Cleland, C.E., Hazen, R.M., Morrison, S.M.Historical natural kinds and mineralogy: systematizing contingency in the context of necessity.Proceedings of the National Academy of Sciences PNAS, Vol. 118, 1 doi.org/10.1073 /pnas.2015370118 9p. PdfGlobalmineral classification

Abstract: The advancement of science depends upon developing classification protocols that systematize natural objects and phenomena into “natural kinds”—categorizations that are conjectured to represent genuine divisions in nature by virtue of playing central roles in the articulation of successful scientific theories. In the physical sciences, theoretically powerful classification systems, such as the periodic table, are typically time independent. Similarly, the standard classification of mineral species by the International Mineralogical Association’s Commission on New Minerals, Nomenclature, and Classification relies on idealized chemical composition and crystal structure, which are time-independent attributes selected on the basis of theoretical considerations from chemical theory and solid-state physics. However, when considering mineral kinds in the historical context of planetary evolution, a different, time-dependent classification scheme is warranted. We propose an "evolutionary" system of mineral classification based on recognition of the role played by minerals in the origin and development of planetary systems. Lacking a comprehensive theory of chemical evolution capable of explaining the time-dependent pattern of chemical complexification exhibited by our universe, we recommend a bootstrapping approach to mineral classification based on observations of geological field studies, astronomical observations, laboratory experiments, and analyses of natural samples and their environments. This approach holds the potential to elucidate underlying universal principles of cosmic chemical complexification.
DS202101-0005
2020
Clements, B.Diamond Exploration in Covid times . 1hr 28 mins.Vancouver Kimberlite Cluster talk Dec. 4, https://www.youtube.com /channel/UCcZvay DnqDDazIHAh1OtregCanadaHistory of diamond discoveries in Canada
DS202102-0179
2020
Cohen, T.Crowning glory ( Almod Diamonds) patented diamond cut.Gems & Jewellery, Vol. 29, 4, pp. 42-44. pdfUnited States, New Yorkdiamond cutting
DS202102-0180
2021
Cone, D., Kopylova, M.Origin of megacrysts by carbonate-bearing metasomatism - case study for the Muskox kimberlite, Slave craton, Canada.Journal of the Geological Society, doi.org/10.1144 /jgs2020-184 53p. Pdf Canada, Northwest Territoriesdeposit - Muskox

Abstract: Low-Cr and high-Cr clinopyroxene, garnet, olivine, and ilmenite megacrysts from the Muskox kimberlite (Canada) have been analyzed for major and trace elements, as well as Sr, Nd, and Pb isotopes. Samples display compositional overlap with respective phases in websterite, while clinopyroxene isotope systematics reveal similarities with both websteritic and metasomatic clinopyroxene in peridotites from the same kimberlite, in addition to Muskox and Jericho kimberlite. All lithologies may represent the products of mixing between EM1 mantle, relic Proterozoic enriched mantle and HIMU carbonatitic fluid. Equilibrium melts calculated from clinopyroxene trace element data using experimental distribution coefficients for feasible proto-kimberlitic melts yield a range of possible metasomatic agents. Conclusion on the carbonate-bearing nature of the metasomatism was based on the presence of a HIMU isotopic signature and results obtained from thermodynamic modeling using the Deep Earth Water model. The latter shows that mineral compositions analogous to megacrysts cannot be produced by metasomatism of mantle peridotite by H2O-rich kimberlitic fluids, or fluids in equilibrium with either asthenospheric or eclogitic mantle. Isotope systematics argue against a strictly cognate relationship between megacrysts and their host kimberlite, instead suggesting megacrysts and websterites may represent products of regional metasomatism by carbonatitic HIMU fluids shortly predating kimberlite magmatism.
DS202107-1094
2021
Consuma, G., Aulbach, S., Braga, R., Martin, L.A.J., Tropper, P., Gerdes, A., Fiorentini, M.L.Multi-stage sulfur and carbon mobility in fossil continental subduction zones: new insights from carbonate-bearing orogenic peridotites. *** Not specific to diamondsGeochimica et Cosmochimica Acta, Vol. 306, pp. 143-170. pdfEurope, Italysubduction

Abstract: The volatile transfer in subduction zones and the role of sulfate as a vector for the mobilization of oxidized components from down-going slabs remain hotly debated issues. Orogenic spinel and garnet peridotite lenses from the Ulten Zone (Eastern Alps, Italy), exhumed as part of felsic metamorphic terranes in continental collision zones, bear witness to mass transfer processes in these pivotal environments. In this study, we carried out a multi-method investigation of mantle sulfides coexisting with four generations of carbonates, indicating coupled sulfur and carbon mobility throughout the peridotites’ metamorphic evolution as part of the Variscan subduction architecture. Detailed petrography, bulk rock measurements, in situ chemical and geochemical analyses of sulfides as well as Sr isotope analyses of associated clinopyroxene and amphibole are combined with the aim to constrain the origin, nature and effect of multiple C-O-H-S-bearing fluids and melts the peridotites interacted with. The first, pre-peak, metasomatic pulse (Stage 1) is represented by an H2S-CO2-bearing melt from the subduction-modified hot mantle wedge, which formed a pyroxenite layer hosting matrix pentlandite with ?34S of +2.77‰. Matrix carbonates occasionally occur in the coarse-grained peridotite under eclogite-facies conditions (Stage 2), with heavier ?34S (up to +3.43‰), radiogenic Sr (87Sr/86Srclinopyroxene > 0.7052) and elevated Pb abundances. These are ascribed to interaction with isotopically heavy melts carrying recycled crustal component, permissive of, but not requiring, involvement of oxidized S species. Conversely, isotopically lighter matrix pentlandite (?34S = ?1.62 to +0.67‰), and radiogenic Sr in amphibole (87Sr/86Sr = 0.7056) and associated dolomite (published data) from fine-grained garnet-amphibole peridotites may point to involvement of H2S-CO2-bearing crustal fluids, which variably equilibrated with the mantle before interacting with the peridotites. The post-peak Stage 3 marks the entrapment of peridotites into a tectonic mélange. Here, kelyphitization of garnet is catalyzed by further ingress of a S-bearing fluid (?34S = ?0.38‰), while carbonate veining with occasional sulfides bear witness to channelized fluid flow. Sulfide and amphibole grains in retrogressed spinel peridotites reveal the highest contents of fluid-mobile elements (As, Sb) and 87Sr/86Sramphibole up to 0.7074, suggesting late interactions with isotopically heavy crustal fluids at high fluid-rock ratios. Textural observations indicate that, during Stage 4, serpentinization of peridotites at low ƒS2 played an active role not only in CO2 release by conversion of dolomite to calcite + brucite intergrowths, but also in local removal of 32S during the final exhumation stage. Late channelized sulfur remobilization is evidenced by the serpentine + magnetite (±millerite ± calcite) vein carrying > 300 ppm S. Overall, the relatively narrow range of sulfur isotope composition (?34S = ?1.62 to +3.76‰) is indicative of limited interaction with isotopically heavy crustal liquids, and points to a subordinate role of subduction-derived sulfate throughout the extended fluid(melt)/rock evolution of the Ulten Zone peridotites, first in the mantle wedge and then as part of a tectonic mélange.
DS202103-0374
2021
Cooper, C.M., Farrington, R.J., Miller, M.S.On the destructive tendencies of cratons.Geology, Vol. 49, pp. 195-200. pdfMantlesubduction

Abstract: We propose that subducting slabs may cause lithospheric removal by directing mantle flow along the craton margin. This process could carve and shape the cratons, leading to conditions that impact the overall (in)stability of the lithosphere. We use three-dimensional geodynamic models to investigate how subduction-driven directed flow interacts with cratonic lithosphere of differing shape, concluding that the margin shape controls both channelization of flow around the craton as well as the potential for destruction. While the simulations show that all craton shapes aid in channelization, the cratons with straight vertical margins are the most resistant to deformation, and the cratons with gradually thickening margins are less resistant to deformation. The dependence on shape could contribute to the progressive removal of cratonic lithosphere along its margin in a runaway process until a more stable vertical margin shape evolves.
DS202103-0375
2021
Corrigan, D., van Roogen, D., Wodicka, N.Indenter tectonics in the Canadian shield: a case study for Paleoproterozoic lower crust exhumation, orocline development, and lateral extrusion.Precambrian Research, Vol. 355, 106083, 23p. PdfCanada, Quebec, Ungava tectonics

Abstract: There are lingering questions about how far back in geologic time plate tectonic processes began. In the Paleoproterozoic of eastern Laurentia, accretion of intra-oceanic juvenile terranes along the leading edge of the Superior craton apex (Ungava indenter) during the interval 1.87-1.83 Ga was followed by collision with the Churchill plate at ca. 1.83-1.79 Ga. Orthogonal shortening along the indenter led to early obduction of the juvenile terranes including the ca. 2.0 Ga Watts Group ophiolite, followed by out-of-sequence thrusting at ca. 1.83 Ga of granulite-facies crystalline basement of the Sugluk block (Churchill plate) along the Sugluk suture. Exhumation and erosion of the Sugluk block led to deposition of a foreland/delta fan sequence in the Hudson Bay re-entrant (Omarolluk and Loaf formations of the Belcher Group), with detritus sourced exclusively from the Sugluk block. Continued collision led to critical wedge development and orocline formation in the Hudson Bay re-entrant, forming a strongly arcuate fold-thrust belt. On the other (eastern) side of the indenter, material flow during crustal shortening was accommodated by lateral extrusion of microplates towards a then open ocean basin, in a manner similar to present-day extrusion of Indochina as a response to India - South China craton convergence. In the Churchill plate hinterland W-NW of the indenter, propagating strike-slip faults resulted in the far-field extrusion and oblique exhumation of Archean crustal slices of the Rae crustal block. The 1.83-1.79 Ga Superior-Churchill collision accommodated a minimum of 500 km of continent-continent convergence, with resulting style and mechanisms of orogenic growth and material flow similar to those observed in the Alpine-Himalayan orogenic system.
DS202107-1095
2021
Coward, S., Campbell, JAHAnalytics for effective investment in early stage diamond exploration. SAIMM Conference, 36 ppts. PdfGlobaleconomics
DS202110-1607
2021
Cowing, M.D.Diamond's spectral constellation. Reverse ray tracingGemmology Today, Vol. 1, 1, June pp. 24-31. Globalreflectance
DS202101-0006
2020
Cui, D., Liao, Z., Qi, L., Zhong, Q., Zhou, Z.A study of emeralds from Davdar, north-western China.Journal of Gemology, Vol. 37, 4, pp. 374-392Chinaemerald

Abstract: At the Davdar mine in Xinjiang, north-western China, emeralds are hosted mainly by carbonate, quartz-carbonate and quartz veins cutting metasedimentary rocks, and are associated with minerals such as hematite, dolomite, quartz, orthoclase and albite. Sixteen rough emeralds obtained during the authors’ visit to the mining area in 2019 were studied by standard gemmolog-ical techniques and various spectroscopic methods (FTIR, Raman, UV-Vis-NIR and EPR), as well as LA-ICP-MS chemical analysis. The analysed samples were mostly coloured by Cr, and showed a wide range of Fe, V, Mg and alkali contents, along with relatively low Cs, Rb and Sc. UV-Vis-NIR spectra showed features at 370 nm (Fe3+), 430 nm (Cr3+ with contributions from V3+ and possibly Fe3+), 580-630 nm (Cr3+ and V3+), 638 and 683 nm (Cr3+), and 850 nm (Fe2+ and possibly Fe2+-Fe3+interactions). In addition, the more V-rich emeralds displayed a distinct V3+ absorption band at about 385-395 nm. Notably, the chemical composition of Davdar emeralds shows significant overlap with those from Panjshir, Afghanistan.
DS202110-1608
2021
da Silva, G.F., Ferreira, M., Costa, I., Borges Bernardes, R.Qmin: A machine learning-based application for mineral chemistry data processing and analysis. * note not specific to diamonds.Researchgate Preprint, 23p. PdfGlobalmineralogy

Abstract: Mineral chemistry analysis is a valuable tool in several phases of mineralogy and mineral prospecting studies. This type of analysis can point out relevant information, such as concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Due to this, considerable amount of data has been generated, especially with the use of electron probe micro-analyzers (EPMA), either in research for academic purposes or in a typical prospecting campaign in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, we envisage this research niche could benefit from the versatility brought by machine learning algorithms. In this paper, we present Qmin, an application that assists in increasing the efficiency of mineral chemistry data processing and analysis stages through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forest algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 11,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ca. 99% for the minerals known by Qmin. Therefore, we highlight the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data.
DS202111-1764
2021
D'Agrella-Filho, M.S., Antonio, P.Y.J., Trindade, R.I.F., Texeira, W., Bispo-Santos, F.The Precambrian drift history and paleogeography of Amazonia. Chapter 6.Ancient supercontinents and the paleogeography of Earth eds Pesonen, Salminen, Elming, Evans, Veikkolainen, 41p. pdfMantlesupercontinents, craton, Colombis, Rodinia, Gondwana

Abstract: Here, we reassess the paleomagnetic database for Amazonia and its geodynamic implications for supercontinents. According to paleomagnetic and geological data Amazonia and West Africa joined at c.2.00 Ga defining a single long-lived block. This landmass eventually formed a part of the Columbia supercontinent together with Baltica and Laurentia between 1.78 and 1.42 Ga. For the formation of Rodinia paleomagnetic and geological data permit three different models: an oblique collision at c.1.2 Ga, a clockwise rotation of Amazonia/West Africa and Baltica from Columbia to Rodinia joining Laurentia at c.1.0 Ga, or a scenario where Amazonia/West Africa were a wandering block that did not take part in Columbia and collided with Laurentia to form Rodinia at c.1.0-0.95 Ga. The time Amazonia/West Africa joined Gondwana is also debatable, with contrasting geochronological and geological evidence supporting an early collision at 0.65-0.60 Ga or a late collision at 0.53-0.52 Ga.
DS202105-0759
2021
Dai, H-K., Zheng, J-P., Griffin, W.L., O'Reilly, S.Y., Xiong, Q., Ping, X-Q., Chen, F-K., Lu, J-G.Pyroxenite xenoliths record complex melt impregnation in the deep lithosphere of the northwestern North China craton.Journal of Petrology, Vol. 62, 2, pp. 1-32. pdf.ChinaCraton

Abstract: Transformation of refractory cratonic mantle into more fertile lithologies is the key to the fate of cratonic lithosphere. This process has been extensively studied in the eastern North China Craton (NCC) while that of its western part is still poorly constrained. A comprehensive study of newly-found pyroxenite xenoliths from the Langshan area, in the northwestern part of this craton is integrated with a regional synthesis of pyroxenite and peridotite xenoliths to constrain the petrogenesis of the pyroxenites and provide an overview of the processes involved in the modification of the deep lithosphere. The Langshan pyroxenites are of two types, high-Mg# [Mg2+/(Mg2++Fe2+)*100 = ?90, atomic ratios] olivine-bearing websterites with high equilibration temperatures (880-970 oC), and low-Mg# (70-80) plagioclase-bearing websterites with low equilibration temperatures (550-835 oC). The high-Mg# pyroxenites show trade-off abundances of olivine and orthopyroxene, highly depleted bulk Sr-Nd (?Nd = +11•41, 87Sr/86Sr = ?0•7034) and low clinopyroxene Sr isotopic ratios (mean 87Sr/86Sr = ?0•703). They are considered to reflect the reaction of mantle peridotites with silica-rich silicate melts derived from the convective mantle. Their depletion in fusible components (e.g., FeO, TiO2 and Na2O) and progressive exhaustion of incompatible elements suggest melt extraction after their formation. The low-Mg# pyroxenites display layered structures, convex-upward rare earth element patterns, moderately enriched bulk Sr-Nd isotopic ratios (?Nd = -14•20- -16•74, 87Sr/86Sr = 0•7070-0•7078) and variable clinopyroxene Sr-isotope ratios (87Sr/86Sr = 0•706-0•711). They are interpreted to be crustal cumulates from hypersthene-normative melts generated by interaction between the asthenosphere and heterogeneous lithospheric mantle. Combined with studies on regional peridotite xenoliths, it is shown that the thinning and refertilization of the lithospheric mantle was accompanied by crustal rejuvenation and that such processes occurred ubiquitously in the northwestern part of the NCC. A geodynamic model is proposed for the evolution of the deep lithosphere, which includes long-term mass transfer through a mantle wedge into the deep crust from the Paleozoic to the Cenozoic, triggered by subduction of the Paleo-Asian Ocean and the Late Mesozoic lithospheric extension of eastern Asia.
DS202105-0760
2021
Dalton, H.Temporal evolution of kimberlite magmatism in Finland: an evaluation of geochronological methods commonly applied to kimberlites.Vancouver Kimberlite Cluster , May 25, 6pm PSTEurope, Finlandmagmatism
DS202112-1925
2021
Danilov, K., Yakovlev, E., Afonin, N.Study of deep structure of the kimberlite pipe named after M. Lomonosov of the Arkhangelsk diamondiferous province obtained by joint using of passive seismic and radiometric methods.Pure and Applied Geophysics, Vol. 178, 10, pp, 3933-3952.Russia, Arkangelskdeposit - Lomonsov

Abstract: Kimberlite pipes are difficult to investigate due to their vertical orientation, conic shape and diverse physical characteristics and petrological compositions, all of which obstruct the use of magnetic methods, reflection and refraction seismic surveys to examine kimberlite pipes. Wherein the emplacement model for kimberlite pipes has important significance in resource geology and in mine design process. As a result, the development of new methods of investigating kimberlite pipes remains necessary. To that end, because the most stable characteristic of kimberlite pipes is their downward-tapering structure, the pipes can be more effectively examined by using methods offering high resolution and new indicators for prospecting. Herein, we present the results of jointly using passive seismic and radiometric methods to study the structure of a kimberlite pipe and its enclosing environment. In particular, we employed a microseismic sounding method, passive seismic interferometry, the H/V method, gamma spectrometry and emanation mapping to model the kimberlite pipe named after M. Lomonosov of the Arkhangelsk diamondiferous province. The combined use of those methods revealed an ore-controlled fault and probably a supply channel (i.e. dyke). The obtained model is correspondent to drill whole data and includes additional information about the structure and elastic properties of the studied pipe. Amongst its principal benefits, the proposed technique affords the possibility of discerning the primary elements of the kimberlite pipes and enclosing environments at depths from 30 m to 2 km, which can significantly increase the effectiveness of investigations into kimberlite pipes.
DS202110-1609
2021
Dasari, V., Sharma, A., Marvillet, E., Singh, P., Rudashevsky, V., Alikin, O., Zaveri, V.Liberation of emeralds from micaeous host rocks using electric-pulse dissaggregation vs conventional processing.Journal of Gemmology, Vol. 37, 7, pp. 716-724.Globalemeralds

Abstract: In ore processing, electric-pulse disaggregation (EPD) is used for the liberation of mineral crystals from host rocks. Since 2019, EPD technology has been used exclusively to recover emeralds produced from the Kagem mine in Zambia. This article compares the differences in the recovery of emeralds from micaceous schist host rock at the Kagem mine by EPD technology versus the conventional hand-cobbing method. The amount of emeralds obtained using both methods was similar, but EPD had numerous advantages in terms of liberation speed, ease of performing the process and the characteristics of the liberated emeralds.
DS202110-1610
2021
de Barros Gomes, C., Azzone, R.G., Rojas, G.E.E., Guarino, V., Ruberti, E.Agpaitic alkaline rocks in southern Brazilian platform: a review.Minerals MDPI, Vol. 11, 934, 30p. PdfSouth America, Brazil, Paraguayalkaline magmatism

Abstract: General information is presented on ten agpaitic occurrences located in southern Brazil and at the border between Brazil and Paraguay. All the Brazilian agpaitic rocks are Late Cretaceous in age, whereas the Paraguayan ones are older than Early Triassic. The most significant occurrence is Poços de Caldas, the largest alkaline massif in South America. In general, these agpaitic rocks contain mineral assemblages that indicate presence of typical halogen-bearing Na-Ca-HFSE phases, eudialyte-, rinkite- and wöhlerite-group minerals being the most frequent ones. However, these associations are indeed more complex in terms of composition, with accessory phases in some cases consisting of various minerals, including U-Th oxides/silicates, Nb oxides, REE-Sr-Ba bearing carbonates-fluorocarbonates-phosphates-silicates and Zr-Na rich silicates. They usually form late magmatic stage to hydrothermal/deuteric assemblages linked with coarse and fine-grained, mainly silica-undersaturated evolved rocks. Data also indicate significant differences in type, amount and composition of agpaitic minerals in all investigated occurrences.
DS202109-1458
2021
de Caravlho, L.D.V., Jalowitzki, T., Scholz, R., de Oliveira Gonzales, G., Rocha, M.P., Peeira, R.S., Lana, C., de Castro, P., Queiroga, G., Fuck, R.A.An exotic Cretaceous kimberlite linked to metasomatized lithospheric mantle beneath the southwestern margin of the Sao Francisco Craton, Brazil.Geoscience Frontiers, doi,org/101016/j.gsf.2021.101.28South America, Brazildeposit - Osvaldo Franca 1

Abstract: We present major and trace element compositions of mineral concentrates comprising garnet xenocrysts, ilmenite, phlogopite, spinel, zircon, and uncommon minerals (titanite, calzirtite, anatase, baddeleyite and pyrochlore) of a newly discovered Late Cretaceous kimberlite (U-Pb zircon age 90.0 ± 1.3 Ma; 2?) named Osvaldo França 1, located in the Alto Paranaíba Igneous Province (APIP), southeastern Brazil. Pyrope grains are lherzolitic (Lherz-1, Lherz-2 and Lherz-3), harzburgitic (Harz-3) and wehrlitic (Wehr-2). The pyrope xenocrysts cover a wide mantle column in the subcratonic lithosphere (66-143 km; 20-43 kbar) at relatively low temperatures (811-875 °C). The shallowest part of this mantle is represented by Lherz-1 pyropes (20-32 kbar), which have low-Cr (Cr2O3 = 1.74-6.89 wt.%) and fractionated middle to heavy rare earth elements (MREE-HREE) pattern. The deepest samples are represented by Lherz-2, Lherz-3, Harz-3, and Wehr-2 pyropes (36-43 kbar). They contain high-Cr contents (Cr2O3 = 7.36-11.19 wt.%) and are characterized by sinusoidal (Lherz-2 and Wehr-2) and spoon-like (Lherz-3 and Harz-3) REE patterns. According to their REE and trace elements, pyrope xenocrysts have enriched nature (e.g., Ce and Yb vs. Cr2O3), indicating that the cratonic lithosphere has been affected by a silicate melt with subalkaline/tholeiite composition due to their low Zr, Ti and Y concentrations. Besides minerals with typical kimberlitic signatures, such as ilmenite and zircon, the exotic compositions of phlogopite and ulvöspinel suggest an enriched component in the magma source. The formation of rare mineral phases with strong enrichment of light-REE (LREE) and high field strength elements (HFSE) is attributed to the late-stage kimberlitic melt. We propose a tectonic model where a thermal anomaly, represented by the low-velocity seismic anomaly observed in P-wave seismic tomography images, supplied heat to activate the alkaline magmatism from a metasomatized cratonic mantle source during the late-stages of Gondwana fragmentation and consequent South Atlantic Ocean opening. The metasomatism recorded by mineral phases is a product of long-lived recycling of subducted oceanic plates since the Neoproterozoic (Brasiliano Orogeny) or even older collisional events, contributing to the exotic character of the Osvaldo França 1 kimberlite, as well as to the cratonic lithospheric mantle.
DS202105-0761
2021
De Wit, M.Paleozoic diamond deposits of the NW Province, South Africa.Wits Geotalk recorded, https://youtu.be/ BajbGtkTqpEAfrica, South Africaalluvials
DS202107-1096
2021
de Wit, M., Bamford, M.Fossil wood from the Upper Cretaceous crater sediments of the Salpeterkop volcano, North West Province, South Africa. Carbonatite, melilititesSouth African Journal of Geology, doi:10.25131/sajg.124.0028 10p. PdfAfrica, South Africadeposit - Salpeterkop

Abstract: The Salpeterkop volcano forms part of what has been referred to as the Upper Cretaceous Sutherland Suite of alkaline rocks, an igneous province composed of olivine melilitites, carbonatites, trachytes and ultramafic lamprophyres. Salpeterkop is a remnant of the summit tuff ring structure that surrounds a crater which is almost 1 km in diameter and is filled with epiclastic strata. Five pieces of silicified wood were collected from the crater filled sediments, sectioned and identified as a new species of Cupressinoxylon, C. widdringtonioides. This is the first example of the fossil genus in South Africa. Only one member of the Cupressaceae s.l. occurs in southern Africa today. From the wide and indistinct growth rings in the fossil wood it can be deduced that the local climate was warm and humid with little or no seasonality, in support of global records of a warm Late Cretaceous. The preservation of the crater further signifies the low level of erosion the region has experienced since its emplacement.
DS202112-1926
2021
de Wit, M.C.J.The geology of the late-Cretaceous Saltpeterkop volcano near Sutherland: a geomorphic benchmark.Journal of African Earth Sciences, Vol. 185, 104414, 19p. PdfAfrica, South Africacarbonatite

Abstract: The Salpeterkop volcano is spatially part of the Sutherland Suite of alkaline rocks in the Northern Cape. It is one of the best preserved volcanoes in South Africa with part of the tuff ring still intact, remnants of the ejecta mantle outside the crater still preserved, and is host to epiclastic rocks, including ash and lapillistone and water lain sediments, inside the crater. New dates from apatites and phlogopites from Salpeterkop suggest an age close to 70 Ma. This Upper Cretaceous age is supported by the silicified wood found within the epiclastic sediments. Its relationship to the alkaline rocks in this cluster is not entirely clear but field evidence suggests that initial olivine melilitites and ultramafic bodies were followed by the main eruption that produced Salpeterkop. Clear igneous components in the associated breccias and pyroclastics are rare but indicate that this volcano was linked to an alkaline (trachytic) intrusion driven by phreatic magmatism. This is further highlighted by the presence of (nepheline?) syenite xenoliths in some carbonatite breccias and dykes that are part of the later carbonatites with its associated hydrothermal alteration products. Although the carbonatites are largely late-stage, there is evidence of earlier carbonatite activity from a precursor carbonatite dyke that has off-set an olivine melilitite dyke. Relatively unaltered pyroclastics, associated with two vents, northeast and northwest of the crater respectively, represent the final phase of this volcanic centre. Finally, the preservation of the Salpeterkop crater and its associated volcaniclastics highlights the change of intense landscape denudation, that ensued from Gondwana break-up to the end of the Cretaceous, to a period of drastically reduced erosion rates during the Cenozoic Era.
DS202101-0007
2020
Decree, S., Savolainen, M., Mercadier, J., Debaille, V., Hohn, S., Frimmel, H., Baele, J-M.Geochemical and spectroscopic investigation of apatite in the Siilinjarvi carbonatite complex: keys to understanding apatite forming processes and assessing potential for rare earth elements.Applied Geochemistry, Vol. 123, 104778 17p. PdfEurope, Finlanddeposit - Siilinjarvi

Abstract: The Siilinjärvi phosphate deposit (Finland) is hosted by an Archean carbonatite complex. The main body is composed of glimmerite, carbonatite and combinations thereof. It is surrounded by a well-developed fenitization zone. Almost all the rocks pertaining to the glimmerite-carbonatite series are considered for exploitation of phosphate. New petrological and in-situ geochemical as well as spectroscopic data obtained by cathodoluminescence, Raman and laser-induced breakdown spectroscopy make it possible to constrain the genesis and evolution of apatite through time. Apatite in the glimmerite-carbonatite series formed by igneous processes. An increase in rare earth elements (REE) content during apatite deposition can be explained by re-equilibration of early apatite (via sub-solidus diffusion at the magmatic stage) with a fresh carbonatitic magma enriched in these elements. This late carbonatite emplacement has been known as a major contributor to the overall P and REE endowment of the system and is likely connected to fenitization and alkali-rich fluids. These fluids - enriched in REE - would have interacted with apatite in the fenite, resulting in an increase in REE content through coupled dissolution-reprecipitation processes. Finally, a marked decrease in LREE is observed in apatite hosted by fenite. It highlights the alteration of apatite by a REE-poor fluid during a late-magmatic/hydrothermal stage. Regarding the potential for REE exploitation, geochemical data combined with an estimation of the reserves indicate a sub-economic potential of REE to be exploited as by-products of phosphate mining. Spectroscopic analyses further provide helpful data for exploration, by determining the P and REE distribution and the enrichment in carbonatite and within apatite.
DS202106-0930
2020
Dellas, G.Diamond plant statistics, process efficiencies, liberation modelling, and simulation: the art of the possible.saimm.co.za, 8p. pdfAfrica, South Africamining

Abstract: The paper brings together the language of diamond numbers and the underlying principles for calculation of diamond liberation, followed by estimation of process efficiency at circuit and complete plant levels. In this way it provides a reference point, albeit a mixture of the theoretical and empirical, to assess the effectiveness of diamond plant accounting systems in the field. Having established today's baseline, the wider aim is ongoing education, peer technical debate, and progression to a more exact science.
DS202108-1277
2021
Derycke, A., Gautheron, C., Barbarand, J., Bourbon, P., Aertgeerts, G., Simon-Labric, T., Sarda, P., Pinna-Jamme, R., Boukari, C., Gaurine, F.French Guiana margin evolution: from Gondwana break-up to Atlantic Ocean.Terra Nova, Vol. 33, 4, pp. 415-422. pdfSouth America, French GuianaGuiana Shield

Abstract: Knowledge of the Guiana Shield evolution during the Gondwana break-up is key to a better understanding of craton dynamics and margin response to transtensional opening. To improve this knowledge, we investigated the dynamics and thermal evolution of French Guiana, using several low-temperature thermochronology methods applied to basement rocks, including apatite and zircon (U-Th)/He and apatite fission tracks. Inverse modelling of results allows us to reconstruct the Phanerozoic thermal history of French Guiana margin and to give a preview of the Guiana Shield evolution. Three main events are inferred: firstly, a long-term period of relative stability since ~1.2 Ga, with no strong evidence for any erosional or burial event (>5-7 km); secondly, a heating phase between ~210 and ~140 Ma consistent with the Central Atlantic Magmatic Province-related event. Finally, an exhumation phase between ~140 and ~90 Ma, triggered by the Equatorial Atlantic opening, brought samples close to the surface (<40°C).
DS202109-1459
2021
Dessai, A.G., Griffin, W.L. Decratonization and reactivation of the southern Indian shield: an integrated perspective. Earth Science Reviews , Vol. 220, 103702 16p. PdfIndiacraton - Dharwar

Abstract: A 150-200 km thick, cold (35-45 mWm?2), melt-depleted lithospheric keel characterised the eastern cratons of the Indian shield at the end of the Precambrian. Differing chemical- and isotopic-characteristics, and ages of the crust and mantle rocks reveal the decoupling of the crust and mantle beneath the cratons, beginning at 2.45 Ga, in the Bastar craton. The Pan-African event was more pervasive and brought about widespread reworking in most of the cratons of the shield. Major-, trace- and rare-earth elements combined with Sr, Nd and Hf isotope data suggest a heterogenous SCLM beneath southern India. The trace element signatures of xenoliths and the presence of majoritic garnet inclusions in diamond suggest that some kimberlites were derived from the mantle transition zone. Mesoproterozoic (1.2-1.4 Ga) modal and cryptic refertilisation by asthenosphere-derived, low-degree carbonated melts led to the generation of the fluids responsible for the metasomatic transformation of the source rocks. The western craton of the shield has witnessed more severe reactivation than the eastern due to the frequent interaction of the Indian plate with mantle plumes. One plume caused major igneous activity during the late Cretaceous, synchronous with crustal attenuation, rifting and the ridge-jump at 66 Ma, in the Indian Ocean. By the end of the Palaeocene the geotherm of the western craton had risen from 50 to 55 mWm?2 in the Proterozoic to a peak 80-90 mWm?2. This increase in heat flow not only modulated the mantle thermal regime, but led to a net loss of more than 100 km of lithosphere and to destabilisation of the craton. After this thermal event, the lithosphere preserves a thickness of barely 60-80 km, and a thin crust (10-21 km) beneath the continental margin in the west. These changes decratonized the western part of the shield and the transitional region further west in the Indian Ocean where the continental ridges are almost devoid of crustal sections and the lithosphere is ~60 km thick. The waning of the Deccan Traps (65 Ma) magmatism was marked by alkaline intrusive activity along the western margin of the shield, probably derived from the SCLM in response to the rise of the mantle plume. Low degree (2-3%) partial melting of a modally and cryptically metasomatized source may have been involved in the generation of alkaline magmas from a depleted mantle source variously contaminated by an enriched endmember.
DS202101-0008
2020
Dessai, A.G., Viegas, A., Griffin, W.L.Thermal architecture of cratonic India and implications for decratonization of the western Dharwar craton: evidence from mantle xenoliths in the Deccan traps.Lithos, in press available, 56p. PdfIndiageothermometry

Abstract: The mantle beneath the Western Dharwar Craton of the Indian shield comprises a suite of refractory and fertile peridotites and mafic granulites. Detailed petrographic studies coupled with new mineral analysis and geothermobarometric estimations permit to decipher the thermal architecture and get an insight into the evolution of this ancient craton. The refractory rocks are coarse grained harzburgites/dunites, whereas the more fertile ones are at times, porphyroclastic lherzolites. Both show a similar range of equilibration temperatures and pressures indicating intermixing between the two at various levels. The peridotites contain undeformed interstitial REE-enriched clinopyroxene, phlogopite, apatite and carbonates recording post-kinematic modal and cryptic metasomatic events in the Precambrian cratonic lithosphere. Xenoliths of mafic granulite contain layers of clinopyroxenite which also vein the granulite. The P-T range of the granulites overlaps that of the ultramafic rocks. This study in combination with previous investigations reveals a distinct change in the thermal architecture of the craton from a warm/hot geotherm in the Proterozoic to a highly perturbed, still hotter geotherm of the Palaeocene. The Cenozoic thermotectonic rifting episodes heated, refertilized and thinned the bulk of the cratonic lithosphere beneath the Western Dharwar Craton, which has witnessed the most re-activation among cratons of the Indian shield. The waning of the Deccan Traps volcanism in Palaeocene time saw the reworking of ancient cratonic lithosphere and its replacement by non-cratonic, juvenile mantle and magmatic accretions, indicated by compound xenoliths. Differing petrological and geochemical characteristics of refractory xenoliths and fertile lherzolites serve to constrain the relative timing and composition of non-cratonic lithosphere. By the end of the Palaeocene the Western Dharwar Craton was characterised by a thermal high, an attenuated continental lithosphere (60-80 km), and a thin crust (<10- ~ 21 km), reflecting the decratonization of at least the western part of the Western Dharwar Craton.
DS202106-0931
2021
Dewey, J.F., Kiseeva, E.S., Pearce, J.A., Robb, L.J.Precambrian tectonic evolution of Earth: an outline.South African Journal of Geology, Vol. 124, 1, pp. 141-162. pdfMantletectonics

Abstract: Space probes in our solar system have examined all bodies larger than about 400 km in diameter and shown that Earth is the only silicate planet with extant plate tectonics sensu stricto. Venus and Earth are about the same size at 12 000 km diameter, and close in density at 5 200 and 5 500 kg.m-3 respectively. Venus and Mars are stagnant lid planets; Mars may have had plate tectonics and Venus may have had alternating ca. 0.5 Ga periods of stagnant lid punctuated by short periods of plate turnover. In this paper, we contend that Earth has seen five, distinct, tectonic periods characterized by mainly different rock associations and patterns with rapid transitions between them; the Hadean to ca. 4.0 Ga, the Eo- and Palaeoarchaean to ca. 3.1 Ga, the Neoarchaean to ca. 2.5 Ga, the Proterozoic to ca. 0.8 Ga, and the Neoproterozoic and Phanerozoic. Plate tectonics sensu stricto, as we know it for present-day Earth, was operating during the Neoproterozoic and Phanerozoic, as witnessed by features such as obducted supra-subduction zone ophiolites, blueschists, jadeite, ruby, continental thin sediment sheets, continental shelf, edge, and rise assemblages, collisional sutures, and long strike-slip faults with large displacements. From rock associations and structures, nothing resembling plate tectonics operated prior to ca. 2.5 Ga. Archaean geology is almost wholly dissimilar from Proterozoic-Phanerozoic geology. Most of the Proterozoic operated in a plate tectonic milieu but, during the Archaean, Earth behaved in a non-plate tectonic way and was probably characterised by a stagnant lid with heat-loss by pluming and volcanism, together with diapiric inversion of tonalite-trondjemite-granodiorite (TTG) basement diapirs through sinking keels of greenstone supracrustals, and very minor mobilism. The Palaeoarchaean differed from the Neoarchaean in having a more blobby appearance whereas a crude linearity is typical of the Neoarchaean. The Hadean was probably a dry stagnant lid Earth with the bulk of its water delivered during the late heavy bombardment, when that thin mafic lithosphere was fragmented to sink into the asthenosphere and generate the copious TTG Ancient Grey Gneisses (AGG). During the Archaean, a stagnant unsegmented, lithospheric lid characterised Earth, although a case can be made for some form of mobilism with “block jostling”, rifting, compression and strike-slip faulting on a small scale. We conclude, following Burke and Dewey (1973), that there is no evidence for subduction on a global scale before about 2.5 Ga, although there is geochemical evidence for some form of local recycling of crustal material into the mantle during that period. After 2.5 Ga, linear/curvilinear deformation belts were developed, which “weld” cratons together and palaeomagnetism indicates that large, lateral, relative motions among continents had begun by at least 1.88 Ga. The “boring billion”, from about 1.8 to 0.8 Ga, was a period of two super-continents (Nuna, also known as Columbia, and Rodinia) characterised by substantial magmatism of intraplate type leading to the hypothesis that Earth had reverted to a single plate planet over this period; however, orogens with marginal accretionary tectonics and related magmatism and ore genesis indicate that plate tectonics was still taking place at and beyond the bounds of these supercontinents. The break-up of Rodinia heralded modern plate tectonics from about 0.8 Ga. Our conclusions are based, almost wholly, upon geological data sets, including petrology, ore geology and geochemistry, with minor input from modelling and theory.
DS202109-1460
2021
Dey, M., Bhattacharjee, S., Chakrabarty, A., Mitchell, R.H., Pal, S., Pal, S, Sen, A.K. Compositional variation and genesis of pyrochlore, belkovite and baotite from the Sevattur carbonatite complex, India.Mineralogical Magazine, Vol. 85, 4, pp. 588-606.Indiadeposit - Sevattur

Abstract: Pyrochlore-group minerals are common in the Neoproterozoic Sevattur carbonatite complex. This complex is composed of dolomite-, calcite-, banded- and blue carbonatite together with pyroxenite, albitite and diverse syenites. This work reports the paragenetic-textural types and compositional variation of pyrochlore hosted by dolomite carbonatite, banded carbonatite and albitite together with that of alteration assemblages containing belkovite and baotite. On the basis of composition, five different types of pyrochlore are recognised and termed Pcl-I through to Pcl-V. The Pb-rich Pcl-I are present exclusively as inclusions in U-rich Pcl-IIa in dolomite carbonatite. The alteration assemblages of Pb-poor Pcl-IIb + Ba-rich or Ba-Si- rich Pcl-IV + belkovite (dolomite carbonatite) and Si-rich Pcl-V + baotite (banded carbonatite) formed after Pcl-IIa differ in these carbonatites. The albitite hosts extremely U-Ti-rich Pcl-III, mantled by Ba-rich potassium feldspar. In common with the banded carbonatite, Pcl-V is formed by alteration of Pcl-III where this mantle is partially, or completely broken. The Ba-Si-enrichment of Pcl-IV and Pcl-V together with the ubiquitous presence of baryte in all Sevattur lithologies suggests late-stage interaction with a Ba-Si-rich acidic hydrothermal fluid. This fluid was responsible for leaching silica from the associated silicates and produced Pcl-V in the silicate-rich lithologies of the banded carbonatite and albitite. The absence of Pcl-V in dolomite carbonatite is a consequence of the low modal abundance of silicates. The complex compositional diversity and lithology specific pyrochlore alteration assemblages suggest that all pyrochlore (Pcl-I to Pcl-IV) were formed initially in an unknown source and transported subsequently in their respective hosts as altered antecrysts.
DS202109-1461
2021
Dey, M., Mitchell, R.H., Bhattacharjee, S., Chakrabarty, A., Pal, S., Pal, S, Sen, A.K. Compositiion and genesis of albitite-hosted antecrystic pyrochlore from the Sevattur carbonatite complex, Inida.Mineralogical Magazine, Vol. 85, 4, pp. 568-587.Indiadeposit - Sevattur

Abstract: The Neoproterozoic Sevattur complex is composed essentially of calcite and dolomite carbonatites together with pyroxenites and diverse syenites. This work reports the compositions and paragenesis of different pyrochlore generations hosted by albitite veins in this complex. The pyrochlore are distinctive, being exceptionally rich in uranium (26 to 36 wt.% UO2). Five types of pyrochlore (Pcl-I to Pcl-V) are recognised on the basis of composition and texture. With the exception of Pcl-V, the majority of the pyrochlore (Pcl-II to Pcl-IV) are surrounded by a thick orbicular mantle of Ba-rich potassium feldspar. This mantle around Pcl-V is partially-broken. Pcl-I is restricted to the cores of crystals, and associated with Pcl-II and -III and is relatively rich in Nb (0.53-0.62 apfu) together with more A-site vacancies (0.37-0.71 apfu) compared to Pcl-II to Pcl-IV. Other pyrochlore (Pcl-II to Pcl-IV) are characterised by elevated Ca and Ti compared to Pcl-I, which are related to the (3Nb5+ + Na+ ? 3Ti4+ + U4+) and (2Nb5+ ? 2Ti4+ + Ca2+) substitutions, respectively. These substitutions represent replacement of Pcl-II to Pcl-IV. Alteration and Ba-enrichment in all the pyrochlore are marked by interaction with an externally-derived Ba-rich hydrothermal fluid following the (2Nb5+ ? 2Ti4+ + Ba2+) substitution. This substitution, coupled with extensive metamictisation leads to the formation of Ba-rich (15.9-16.3 wt.% BaO) patchy-zoned Pcl-V. The orbicular mantles around Pcl-I to Pcl-IV have prevented extensive metamictisation and extensive secondary alteration compared to Pcl-V, where mantling is partially disrupted. The compositional and textural variation suggests that Pcl-II to Pcl-IV form by nucleation on Pcl-I, and are transported subsequently as antecrysts in the host albitite.
DS202103-0376
2021
Dey, M., Mitchell, R.H., Bhattacharjee, S., Chakrabarty, A., Pal, S., Pal, S., Sen, A.K.Composition and genesis of albitite-hosted antecrystic pyrochlore from the Sevattur carbonatite complex, India.Mineralogical Magazine, 20p. Doi:10.1180/mgm.2021.6 24p. PdfIndiadeposit - Sevattur
DS202109-1462
2021
Dhansay, T.Shattered crust: how brittle deformation enables critical zone processes beneath southern Africa.South African Journal of Geology, Vol. 124, pp. 519-536.Africa, South Africageodynamics

Abstract: The delicate interplay of various Earth’s systems processes in the Critical Zone is vital in ensuring an equilibrium across the different spheres of life. The upper crust forms a thin veneer on the Earth’s surface that is defined by an interconnected network of brittle structures. These brittle structures enable various Earth System processes. Increased anthropogenic interactions within the very upper crust have seemingly resulted in a growing number of negative natural effects, including induced seismicity, mine water drainage and land degradation. Brittle structures across South Africa are investigated. These structures include various fractures and dykes of different ages and geodynamic evolutions. The orientation of these structures is compared to the underlying tectonic domains and their bounding suture zones. The orientations corroborate an apparent link between the formation of the brittle structures and the tectonic evolution of the southern African crust. Reactivation and the creation of new structures are also apparent. These are linked to the variability of the surrounding stress field and are shown to have promoted magmatism, e.g., Large Igneous Provinces, and the movement of hydrothermal fluids. These fluids were commonly responsible for the formation of important mineral deposits. The preferred structural orientations and their relationship to underlying tectonic zones are also linked to fractured groundwater aquifers. Subsurface groundwater displays a link to structural orientations. This comparison is extended to surficial water movement. Surface water movement also highlights an apparent link to brittle structures. The apparent correlation between these Earth’s systems processes and the interconnectivity developed by brittle structures are clear. This highlights the importance of high-resolution geological and structural mapping and linking this to further development of the Earth’s Critical Zone.
DS202106-0932
2021
Dhote, P., Bhan, U., Verma, D.Genetic model of carbonatite hosted rare earth elements mineralization from Ambadongar carbonatite complex, Deccan Volcanic Province, India.Ore Geology Reviews, Vol. 135, 104215, 22p. PdfIndiadeposit - Ambadongar

Abstract: Carbonatites and associated alkaline rocks are the primary sources for REE mineralization. The Ambadongar Carbonatite Complex (ADCC) from NW Deccan Volcanic Province (DVP) constitutes the largest Carbonatite Associated REE Deposits (CARD) in India. ADCC belongs to the final stages of the Late Cretaceous alkaline-carbonatite magmatism associated with main Deccan basalt volcanic activity. The ADCC is an envisioned diatreme structure in which four carbonatitic phases are recognized, mainly calcio-carbonatites and ferro-carbonatites. Each successive carbonatite phase shows higher REE enrichment. The primary REE mineralization with bastnäsite as the dominant REE phase is hosted by pervasive hydrothermally altered ferro-carbonatite plugs. The secondary mineralogy formed with barites in the main orebody during late- to post-magmatic hydrothermal fluid alteration is fluorite, quartz, ankerite, and other REE-bearing minerals like bastnäsite, parisite, synchysite, strontianite, florencite, monazite and columbite. Carbonatite samples contain 18.61% to 52.42% of CaO, and the LOI varies from 5.28% to 38.79%. Most can be classified as calcio-carbonatites. Since all the samples also contain an appreciable amount of Fe2O3 (4.13% to 20.20%) and MnO (0.07% to 5.46%), some may be classified as ferro-carbonatites. Total REE content varies from 0.6 to 4%, with a high Ce concentration and LREE/HREE ratio. The highest values for La, Ce, Pr, and Nd are 1.95%, 1.56%, 0.16%, and 0.45%, respectively. Metasomatism of SCLM from asthenospheric melts followed by the low degree partial melting of the SCLM region is responsible for fertile carbonatite generation in ADCC. The multiphase liquid immiscibility of carbonatite melts from carbonate-silicate magma followed by immiscibility of REE rich carbonatite melt and REE deficient fluoride-rich aqueous fluids explain the higher level of REE enrichment in each successive phases of carbonatites in ADCC. The mineralizing fluids were probably the result of residual magmatic volatiles that brought mainly REE and later SiO2 into the overprinted rocks. Ambadongar carbonatites' stable isotopic compositions agree with a magmatic origin (?13C = ?4.1 ± 1.9‰ [PDB] and ?l8O = 10.3 ± 1.7‰ [SMOW]). The C-O stable isotopic modeling indicates re-equilibration under hydrothermal conditions between 180 °C and 70 °C. Significant amounts of REE fluorocarbonate minerals, relatively Sr- and Th-rich, were deposited during re-equilibration. The REE fluorocarbonate bastnäsite-(Ce) occurs as late individual crystals, overgrown on the synchysite and parisite polycrystals. Textural and chemical reactions between the REE fluorocarbonates provide insights into rare-earth elements' mobility during fluid-rock interaction. Early crystallization of synchysite/parisite indicates the high activity of Ca2+, OH?, (SO4)2?, Al and Si in the fluid. Later, the fluid was characterized by increased activity of F?, (SO4)2?, REE and Si, and decreased activity of Ca2+ as reflected in the association of barite, fluorite, quartz, and bastnäsite typical of strongly overprinted ferro-carbonatites. Re-equilibration and recrystallization of the primary minerals in the presence of OH?, (SO4)2?, F?, REE, Al, and Si carried in solution by the hydrothermal fluid is the leading cause behind the refixing of REE in the form of REE fluorocarbonate in REE rich ferro-carbonatites.
DS202102-0181
2020
Dilissen, N., Hidas, K., Garrido, C.J., Kahl, W-A., Sanchez-Vizcaino, V.L.Graphical abstract: Morphological transition during prograde olivine growth formed by high-pressure dehydration of antigorite-serpentinite to chlorite-harzburgite in a subduction setting.Lithos, doi. 10.1016/j. lithos.2020.105949 1p. PdfMantlesubduction

Abstract: Crystal morphologies are essential for deciphering the reaction history of igneous and metamorphic rocks because they often record the interplay between nucleation and growth rates controlled by the departure from equilibrium. Here, we report an exceptional record of the morphological transition of olivine formed during subduction metamorphism and high-pressure dehydration of antigorite-serpentinite to prograde chlorite-harzburgite in the Almirez ultramafic massif (Nevado-Filábride Complex, Betic Cordillera, SE Spain). In this massif, rare varied-textured chlorite-harzburgite (olivine+enstantite+chlorite+oxides) —formed after high-P dehydration of antigorite-serpentinite— exhibits large olivine porphyroblasts made up of rounded cores mantled by coronas of tabular olivine grains, similar to single tabular olivines occurring in the matrix. The correlative X-ray ?-CT and EBSD study of two varied-textured chlorite-harzburgite samples show that tabular olivine in coronas is tabular on (100)Ol with c > b >> a, and grew in nearly the same crystallographic orientation as the rounded olivine cores of the porphyroblast. Quantitative textural analysis and mass balance indicate that varied-textured chlorite-harzburgite is the result of a two-stage nucleation and growth of olivine during the progress of the high-P dehydration of antigorite-serpentinite to chlorite-harzburgite reaction. The first stage occurred under a low affinity (?Gr) and affinity rate (?Gr/dt) of the antigorite dehydration reaction that resulted in a low time-integrated nucleation rate and isotropic growth of olivine, forming rounded olivine porphyroblasts. With further progress of the dehydration reaction, a second stage of relatively higher affinity and affinity rate resulted in a higher time-integrated nucleation rate of olivine coeval with a shift from isotropic to anisotropic olivine growth, leading to tabular olivines. The two-stage evolution resulted in olivine porphyroblasts made up of rounded cores mantled by coronas of tabular olivine grains characteristic of varied-texture chlorite-harzburgite. Although a switch to anisotropic tabular olivine in the second stage is consistent with the relative increase in the affinity and affinity rate, these changes cannot solely account for the growth of Almirez olivine tabular on (100). Tabular olivines in komatiites and other igneous rocks are tabular on (010)Ol with either a > c >> b, or a ? c > > b, in agreement with experimentally determined growth rates of olivine phenocrysts under moderate to high undercooling and cooling rates. On the other hand, olivine tabular on (100) is expected in the presence of highly polymerized fluids where inhibited growth of the olivine (100) and (010) interfaces occurs, respectively, due to dissociative and molecular adsorption of water monolayers. Rounded and tabular olivines in Almirez varied-textured chlorite-harzburgite show differing trace element compositions that we interpret as due to the infiltration of external fluids during antigorite dehydration. Isothermal infiltration of highly polymerized fluids would explain the shift in the affinity and affinity rate of the antigorite dehydration reaction, as well as the olivine morphology tabular on (100) due to the inhibited growth on the (100) and, to a lesser extent, (010). Our study shows that surface-active molecules may play an essential role in shaping the morphology of growing crystals during fluid-present metamorphic crystallization.
DS202108-1278
2021
Ding, J., Zhang, S., Evans, D.A.D., Yang, T., Li, H.North China craton: the conjugate margin for northwestern Laurentia in Rodinia.Geology, Vol. 49, March pp. 773-778.ChinaRodinia

Abstract: In the Rodinia supercontinent, Laurentia is placed at the center because it was flanked by late Neoproterozoic rifted margins; however, the conjugate margin for western Laurentia is still enigmatic. In this study, new paleomagnetic results have been obtained from 15 ca. 775 Ma mafic dikes in eastern Hebei Province, North China craton (NCC). Stepwise thermal demagnetization revealed a high-temperature component, directed northeast or southwest with shallow inclinations, with unblocking temperatures of as high as 580 °C. Rock magnetism suggests the component is carried by single-domain and pseudo-single-domain magnetite grains. Its primary origin is supported by a positive reversal test and regional remanence direction correlation test, and the paleomagnetic pole (29.0°S, 64.7°E, A95 = 5.4°) is not similar to any published younger poles of the NCC. Matching the late Mesoproterozoic to early Neoproterozoic (ca. 1110-775 Ma) apparent polar wander paths of the NCC and Laurentia suggests that the NCC could have been the conjugate margin for northwestern Laurentia in Rodinia, rather than sitting off the northeast coast of the main Rodinian landmass. Geological data indicate that breakup of the NCC and Laurentia occurred between ca. 775 and 720 Ma.
DS202109-1463
2021
Dlakavu, S.AEON Report - Status of the small and junior diamond mining sector.AEON Report, see Cover second page for pdf 88p.Africa, South Africadiamond mining

Abstract: The Small and Junior diamond mining industry, which is dominated by alluvial diamond miners, and a few remaining small kimberlite operations, produced a high proportion of diamonds in South Africa in the late 1950s and early 1960s, prior to the discovery and development of major kimberlite mines such as Finsch and Venetia, in the 1970’s and 80’s. Subsequent to these discoveries the Small and Junior sector remained an active and important participant in the local diamond industry, particularly in respect of the highly sought after top-quality gemstone diamonds produced from the extensive alluvial deposits of South Africa. Since 2004 the sector has shown a strong decline. This report highlights the challenges faced by the Small and Junior diamond miners and makes recommendations for the revival of this sector.
DS202104-0571
2021
Dobretsov, N.L., Zhmodik, S.M., Lazareva, E.V., Bryanskaya, A.V., Ponomarchuk, V.A., Saryg-ool, B. Yu., Kirichenko, I.S., Tolstov, A.V., Karmanov, N.S.Structural and morphological features of the participation of microorganisms in the formation of Nb-REE-rich ores of the Tomtor field, Russia.Doklady Earth Sciences, Vol. 496, pp. 135-138. Russiadeposit - Tomtor

Abstract: Data indicating the important role of microorganisms in the redistribution of REEs in the weathering crust and the decisive role in the concentration of REEs during the formation of ores in the upper ore horizon of the Tomtor field are obtained. The uptake of REEs was carried out by the community of microorganisms, such as phototrophs, methanogens, methanotrophs, and proteobacteria, which form the basis of the microbiocenosis for this paleoecosystem. The isotopic composition of C carbonates in all samples studied with fossilized microorganisms corresponds to the biogenic one, and the isotopic composition ?18?SMOW (from 7 to 20‰) indicates the endogenous (hydrothermal) and, to a lesser extent, exogenous nature of the solutions. The low (87Sr/86Sr)I values of carbonates (~0.7036-0.7042) exclude the participation of seawater.
DS202105-0762
2021
Dong, B., Shi, C., Xu, Z., Wang, K., Luo, H., Sun, F., Wang, P., Wu, E., Zhang, K., Liu, J., Song, Y., Fan, Y.Temperature dependence of optical centers in 1b diamond characteristics by photoluminescence spectra. CVDDiamond & Related Materials, Vol. 116, 108389, 10p. PdfGlobalsynthetics
DS202104-0572
2021
Dong, J., Fischer, R., Stixrude, L., Lithgow-Bertelloni, C.Constraining the volume of Earth's early oceans with a temperature-dependent 2 mantle water storage capacity model.AGU Advances, 1,e2020AV000323Mantlewater

Abstract: At the Earth's surface, the majority of water resides in the oceans, while in the interior, major rock?forming minerals can incorporate significant amounts of water as hydroxyl groups (OH), likely forming another reservoir of water inside the planet. The amount of water that can be dissolved in Earth's mantle minerals, called its water storage capacity, generally decreases at higher temperatures. Over billion?year timescales, the exchange of water between Earth's interior and surface may control the surface oceans' volume change. Here, we calculated the water storage capacity in Earth's solid mantle as a function of mantle temperature. We find that water storage capacity in a hot, early mantle may have been smaller than the amount of water Earth's mantle currently holds, so the additional water in the mantle today would have resided on the surface of the early Earth and formed bigger oceans. Our results suggest that the long?held assumption that the surface oceans' volume remained nearly constant through geologic time may need to be reassessed.
DS202106-0933
2021
Dongre, A., Lavhale, P.,Li, Q-L.Perovskite U-Pb age and petrogenesis of the P-12 kimberlite from the Eastern Dharwar craton, southern India: impilcations for a possible linkage at the 1110 Ma large igneous province.Journal of Asian Earth Sciences, Vol.213, 104750, 12p.pdfIndiadeposit -P12

Abstract: Petrology, bulk-rock geochemistry, and perovskite U-Pb age for the P-12 kimberlite pipe from the Wajrakarur kimberlite field, Eastern Dharwar craton (EDC) of southern India is reported. Perovskites yielded a high-precision U-Pb age of 1122 ± 7.7 Ma, taken to be an emplacement age of the host P-12 kimberlite pipe. The groundmass of coherent facies P-12 kimberlite contains monticellite, clinopyroxene, andradite, atoll spinel with titanomagnetite trend, and perovskite with an elevated REE contents. Phlogopite shows restricted Al2O3 and TiO2 contents. Furthermore, olivines with a wider and higher range of core compositions (i.e. Mg# = 84-94) and multi-granular nodules are the hallmark features of the P-12 pipe. This assorted primary mineral content and its composition indicates the transitional nature of the P-12 towards the Kaapvaal lamproites. However, concentrations of bulk-rock major and trace elements in the P-12 and other Wajrakarur kimberlites are similar to the global hypabyssal magmatic kimberlites. Large ion lithophile and high field strength elements (e.g. Ba and Nb) and their ratios (e.g. La/Nb and Th/Nb) suggest the presence of a heterogeneous and lithosphere influenced mantle source region which have been severely overprinted by metasomatizing fluids/melts emanating from the deep sourced upwelling mantle. The presence of such mixed and metasomatized mantle source regions likely to be an important factor for the transitional nature of the P-12 and other Mesoproterozoic kimberlites. Based on the availability of the newest emplacement ages, we propose a geodynamic model for the origin of kimberlites in the Indian subcontinent. The U-Pb age of 1122 ± 7.7 Ma for the P-12 pipe shows its close temporal association to the emplacement of the recently proposed 1110 Ma Large Igneous Province (LIP), with plume center beneath the NW part of the Kalahari craton. Emplacement of the P-12 and other contemporaneous Indian kimberlites, therefore, marks the impingement of mantle plume which contributed heat and triggered partial melting of metasomatized lithospheric mantle without melt input. The eruption phase of ~ 100 million years (i.e. 1050-1153 Ma), for the kimberlites and related rocks in the Indian shield, does not appear to be continuous and can be separated into several short-durational magmatic events. For this reason, small-volume, volatile-rich magmatism during the Mesoproterozoic time in India is linked to the presence of a number of LIPs and associated mantle plumes during Columbia to Rodinia supercontinent transition and assembly of cratonic blocks of the latter.
DS202109-1464
2021
Doucet, L.S., Li, Z-X., El Dien, H.GOceanic and super-deep continental diamond share a transition zone origin and mantle plume transportation.Nature Scientific Reports, Vol. 11, 16958, 11p. Open access https://www.nature .com/articles/s41598- 021-96286-8.pdf Mantlediamond genesis

Abstract: Rare oceanic diamonds are believed to have a mantle transition zone origin like super-deep continental diamonds. However, oceanic diamonds have a homogeneous and organic-like light carbon isotope signature (?13C ? 28 to ? 20‰) instead of the extremely variable organic to lithospheric mantle signature of super-deep continental diamonds (?13C ? 25‰ to?+?3.5‰). Here, we show that with rare exceptions, oceanic diamonds and the isotopically lighter cores of super-deep continental diamonds share a common organic ?13C composition reflecting carbon brought down to the transition zone by subduction, whereas the rims of such super-deep continental diamonds have the same ?13C as peridotitic diamonds from the lithospheric mantle. Like lithospheric continental diamonds, almost all the known occurrences of oceanic diamonds are linked to plume-induced large igneous provinces or ocean islands, suggesting a common connection to mantle plumes. We argue that mantle plumes bring the transition zone diamonds to shallower levels, where only those emplaced at the base of the continental lithosphere might grow rims with lithospheric mantle carbon isotope signatures.
DS202110-1611
2021
Doucet, L.S., Li, Z-X., El Dien, G.H.Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation.Nature Scientfic Reports, Vol. 11, 16958 11p. PdfMantlediamond genesis

Abstract: Rare oceanic diamonds are believed to have a mantle transition zone origin like super-deep continental diamonds. However, oceanic diamonds have a homogeneous and organic-like light carbon isotope signature (?13C ? 28 to ? 20‰) instead of the extremely variable organic to lithospheric mantle signature of super-deep continental diamonds (?13C ? 25‰ to?+?3.5‰). Here, we show that with rare exceptions, oceanic diamonds and the isotopically lighter cores of super-deep continental diamonds share a common organic ?13C composition reflecting carbon brought down to the transition zone by subduction, whereas the rims of such super-deep continental diamonds have the same ?13C as peridotitic diamonds from the lithospheric mantle. Like lithospheric continental diamonds, almost all the known occurrences of oceanic diamonds are linked to plume-induced large igneous provinces or ocean islands, suggesting a common connection to mantle plumes. We argue that mantle plumes bring the transition zone diamonds to shallower levels, where only those emplaced at the base of the continental lithosphere might grow rims with lithospheric mantle carbon isotope signatures.
DS202108-1279
2021
Dragone, G.N., Bologna, M.S., Ussami, N., Gimenez, M.E., Alvarez, O., Klinger, F.G.L., Correa-Otto, S.Lithosphere of South American intracratonic basins: electromagnetic and potential field data reveal cratons, terranes, and sutures.Tectonophysics, Vol. 811, 13p. PdfSouth America, Argentinacratons

Abstract: A magnetotelluric survey comprising 18 broadband stations disposed along a 450 km-long profile was carried out at the transition between the Chaco-Paraná (CPB) and the Paraná (PB) intracratonic basins in northeastern Argentina. Three-dimensional inversions of the responses show that the CPB and southern PB lithospheres are resistive (~103 ? m) down to 120 km, but with distinct crustal and upper mantle electrical properties. Also, Bouguer gravity and density anomalies are positive at CPB, whereas they are negative at PB. We associate the CPB lithosphere with the Paleoproterozoic Rio Tebicuary craton and the southern PB lithosphere with an ancient and buried piece of craton, the Southern Paraná craton. Geochemical data of mantle xenoliths from the Cenozoic alkaline/carbonatitic province within the Rio Tebicuary craton suggest a subcontinental lithospheric mantle affected by metasomatic processes, which explains its lower resistivity (reaching values as low as 300 ? m) and higher density (#Mg = 0.87). In contrast, the Southern Paraná craton is more resistive (>103 ? m) and less dense, suggesting a de-hydrated, depleted, and thicker craton. These cratons are separated by a crustal conductor (15 to 20 km depth; 1-10 ? m) that we interpret as a southward continuation of a linear anomaly (Paraná Axial Anomaly) defined in former induction studies within the PB in Brazil. Hence, we redefined the trace of this conductive lineament: instead of bending towards the Torres Syncline, it continues inside the CPB. We propose the lineament to be an Early Neoproterozoic suture zone that controlled the location of maximum subsidence in the intracratonic basins during the Paleozoic. In the Early Cretaceous, the Paraná Axial Anomaly was the site of maximum extrusion and deposition of Serra Geral basalts. This anomaly separates compositionally distinct cratonic lithospheres along its path. Melting of this heterogeneous and enriched mantle created the Paraná igneous province.
DS202106-0934
2021
Drollner, M., Barham, M., Kirkland, C.L., Ware, B.Every zircon deserves a date: selection bias in detrital geochronology.** not specific to diamondsGeological Magazine, Vol. 158, 6, pp. 1135-1142. pdfGlobalgeochronology

Abstract: Detrital zircon geochronology can help address stratigraphic- to lithospheric-scale geological questions. The approach is reliant on statistically robust, representative age distributions that fingerprint source areas. However, there is a range of biases that may influence any detrital age signature. Despite being a fundamental and controllable source of bias, handpicking of zircon grains has received surprisingly little attention. Here, we show statistically significant differences in age distributions between bulk-mounted and handpicked fractions from an unconsolidated heavy mineral sand deposit. Although there is no significant size difference between bulk-mounted and handpicked grains, there are significant differences in their aspect ratio, circularity and colour, which indicate inadvertent preferential visual selection of euhedral and coloured zircon grains. Grain colour comparisons between dated and bulk zircon fractions help quantify bias. Bulk-mounting is the preferred method to avoid human-induced selection bias in detrital zircon geochronology.
DS202106-0935
2021
Du Toit, E., Delport, P.W.J.Supplementary mineral resources and mineral reserves reports: readibility and textural choice.saimm.co.za, 10P. PDFAfrica, South Africaeconomics

Abstract: Investing in a mining venture can be risky and stakeholders need transparent, unbiased reports to understand the Mineral Resources and Mineral Reserves a mining company holds. Readability and textual choice can be used consciously to manipulate perceptions, or it can be done unconsciously. This exploratory study investigates the readability and textual choice of supplementary Mineral Resources and Mineral Reserves Reports of companies listed on the Johannesburg Stock Exchange. The results indicate that narrative manipulation occurs in these reports through word choices that make the reports difficult to read, as well as specific narrative selections. This reduces the informational value of the reports. The results of the study will be useful to various stakeholders, such as mining company management, investors, investment specialists, financial analysts, and even employees and the general community, who all use these reports to make important decisions. It is also useful for the preparers of the Mineral Resources and Mineral Reserves Reports, Competent Persons, and other technical specialists to be aware of readability and that certain textual choices can affect the interpretation of these reports. It is recommended that bodies such as the JSE and the SAMREC and SAMVAL Code committees consider adding a plain language requirement to regulations, guidelines, and codes to ensure transparent, unbiased, and objective reports.
DS202102-0182
2020
Dunkl, I. Comparability of heavy mineral data - the first interlaboratory round robin. *** authors cited are too many + 50 more Not specific to diamondsEarth-Science Reviews, Vol. 211, doi.org/ 10.1016/ j.earscirev.2020 .103210 27p. Pdf Globalmineralogy - data

Abstract: Heavy minerals are typically rare but important components of siliciclastic sediments and rocks. Their abundance, proportions, and variability carry valuable information on source rocks, climatic, environmental and transport conditions between source to sink, and diagenetic processes. They are important for practical purposes such as prospecting for mineral resources or the correlation and interpretation of geologic reservoirs. Despite the extensive use of heavy mineral analysis in sedimentary petrography and quite diverse methods for quantifying heavy mineral assemblages, there has never been a systematic comparison of results obtained by different methods and/or operators. This study provides the first interlaboratory test of heavy mineral analysis. Two synthetic heavy mineral samples were prepared with considerably contrasting compositions intended to resemble natural samples. The contributors were requested to provide (i) metadata describing methods, measurement conditions and experience of the operators and (ii) results tables with mineral species and grain counts. One hundred thirty analyses of the two samples were performed by 67 contributors, encompassing both classical microscopic analyses and data obtained by emerging automated techniques based on electron-beam chemical analysis or Raman spectroscopy. Because relatively low numbers of mineral counts (N) are typical for optical analyses while automated techniques allow for high N, the results vary considerably with respect to the Poisson uncertainty of the counting statistics. Therefore, standard methods used in evaluation of round robin tests are not feasible. In our case the ‘true’ compositions of the test samples are not known. Three methods have been applied to determine possible reference values: (i) the initially measured weight percentages, (ii) calculation of grain percentages using estimates of grain volumes and densities, and (iii) the best-match average calculated from the most reliable analyses following multiple, pragmatic and robust criteria. The range of these three values is taken as best approximation of the ‘true’ composition. The reported grain percentages were evaluated according to (i) their overall scatter relative to the most likely composition, (ii) the number of identified components that were part of the test samples, (iii) the total amount of mistakenly identified mineral grains that were actually not added to the samples, and (iv) the number of major components, which match the reference values with 95% confidence. Results indicate that the overall comparability of the analyses is reasonable. However, there are several issues with respect to methods and/or operators. Optical methods yield the poorest results with respect to the scatter of the data. This, however, is not considered inherent to the method as demonstrated by a significant number of optical analyses fulfilling the criteria for the best-match average. Training of the operators is thus considered paramount for optical analyses. Electron-beam methods yield satisfactory results, but problems in the identification of polymorphs and the discrimination of chain silicates are evident. Labs refining their electron-beam results by optical analysis practically tackle this issue. Raman methods yield the best results as indicated by the highest number of major components correctly quantified with 95% confidence and the fact that all laboratories and operators fulfil the criteria for the best-match average. However, a number of problems must be solved before the full potential of the automated high-throughput techniques in heavy mineral analysis can be achieved.
DS202111-1765
2021
Eakin, C.M.Quasi-Love wave scattering reveals tectonic history of Australia and its margins reflected by mantle anisotropy.Communications Earth & Environment, Vol. 2, 10p. Pdf doi:10.1038/s43247-021-00276-7.Australiageophysics - seismics

Abstract: The Australian continental crust preserves a rich geological history, but it is unclear to what extent this history is expressed deeper within the mantle. Here an investigation of Quasi-Love waves is performed to detect scattering of seismic surface waves at mantle depths (between 100-200?km) by lateral gradients in seismic anisotropy. Across Australasia 275 new observations of Quasi-Love waves are presented. The inferred scattering source and lateral anisotropic gradients are preferentially located either near the passive continental margins, or near the boundaries of major geological provinces within Australia. Pervasive fossilized lithospheric anisotropy within the continental interior is implied, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that has preserved this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere below.
DS202104-0573
2021
Eaton-Magana, S., Ardon, T., Breeding, C., Shigley, J.D-Z Diamonds ( Ardon presents the information from the article in Gems & Gemology **** see ref under Ahline same one…….gia.org and knowledge session utube, March GlobalDiamond colour

Abstract: Did you know that certain diamonds can temporarily change color when exposed to heat, ultraviolet light, or even when kept in the dark? Some natural greenish diamonds are known as “chameleon” diamonds due to this property. Other natural pink diamonds and some color-treated and laboratory-grown diamonds can also change color in unexpected ways. Before this phenomenon was known, there were stories of customers returning diamonds they purchased because the diamonds turned out to be the “wrong” color! What exactly causes these interesting diamonds to shift their hues? Find out as GIA senior manager of diamond research Dr. Ulrika D'Haenens-Johansson and senior research scientist Dr. Mike Breeding dive into the mystery of these ultra-cool gems.
DS202103-0377
2020
Eaton-Magana, S., Ardon, T., Breeding, C.M., Shigley, J.E.Natural color D-to-Z diamonds: a crystal clear perspective.Gems & Gemology, Vol. 56, 3, pp. 318-335. pdfGlobaldiamond - colour

Abstract: Colorless to light yellow or brown diamonds with a “D-to-Z” color grade make up the overwhelming majority of the world’s gem diamond trade. Besides clarity features (such as inclusions) and fluorescence observations, however, comparatively little has been explored and published regarding the distinguishing characteristics of these diamonds. The vast majority are type Ia, with infrared spectra showing very high concentrations of nitrogen aggregates. This population of diamonds could not have been subjected to HPHT decolorizing treatment or been laboratory grown, and thus they have been spectroscopically scrutinized in much less detail than the far more rare natural diamonds of types IIa, IIb, and IaB, which need to be investigated as potentially color-treated or synthetic. This study examines a large sample set comprising the full complement of D-to-Z diamonds submitted to GIA laboratories during a significant portion of 2017. The data were evaluated on the basis of diamond type properties, as well as distribution among various grading quality factors, to provide an unprecedented glimpse into the role of these diamond types and differences in their geologic conditions of formation.
DS202108-1280
2021
Eaton-Magana, S., Johnson, P., Barrie, E., Harinova, M.Bicolor rough diamond crystals. ( pink)Gems & Gemology , Vol. 57, 1, pp. 53-55.Australiadiamond colour
DS202102-0183
2020
Eaton-Magana, S., McElhenny, G.Diamond with cavities showing radiation evidence. Gems & Gemology , Vol. 56, 1, pp. 126-127Technologydiamond inclusions

Abstract: The Carlsbad laboratory recently examined a 0.70 ct, E-color round brilliant. Infrared spectroscopy showed this to be a type IIa diamond, so we performed a variety of additional spectroscopy and imaging to verify its natural origin. This diamond also had I1 clarity due to a large inclusion under the table (figure 1). Raman analysis of the inclusions verified that this crystal was a metastable composite of the minerals wollastonite (CaSiO3) and CaSiO3-breyite (E.M. Smith et al., “The very deep origin of the world’s biggest diamonds,” Winter 2017 G&G, pp. 388-403), which indicates a sublithospheric origin. These minerals are believed to be the lower-pressure phases of CaSiO3-perovskite. Around these minerals were large disk-like graphitic fractures indicating inclusion expansion as pressures on the diamond reduced during exhumation from the mantle. The other inclusion present was unidentifiable due to its graphitic casing. Recent research of inclusions in other type II diamonds shows that many, if not most, have a superdeep origin (again, see Smith et al., 2017). This stone is one more example of diamonds forming at incredible depths of 360-750 km before being transported to near the surface.
DS202108-1281
2021
Eaton-Magana, S., Renfro, N., Vavadiya, A.Diamond shaped cloud in diamond.Gems & Gemology , Vol. 57, 1, pp. 65-66.Globaldiamond morphology
DS202103-0378
2021
Eppelbaum, L., Katz, Y.Integrated geological-geophysical study of the junction zone of Eurasia and Gondwana.EGU , 3p. Abstract pdfAfricageophysics

Abstract: Tectonically the considered area of junction of four lithospheric plates (Nubian, Arabian, Aegean- Anatolian and Sinai) belongs to the Eastern Mediterranean, with its Cyprus-Levantine marine and Anatolian-Nubian-Arabian continental framing. The anomalousness of the region is manifested in the tectono-structural features of the mantle, lithosphere, hydrosphere and specifics of atmospheric, biospheric processes, and Hominid evolution.
DS202104-0574
2021
Eppelbaum, L.V., Ben-Avraham, Z., Youri, K., Cloetough, S., Kaban, M.K.Giant quasi-ring mantle structure in the African-Arabian junction: results derived from the geological-geophysical data integration.Geotectonics, 10.1134/S0016 85212010052Africageophysics - seismic

Abstract: The tectonic-geodynamic characteristics of the North African-Arabian region are complicated by interaction of numerous factors. To study this interaction, we primarily used the satellite gravity data (retracked to the Earth's surface), recognized as a powerful tool for tectonic-geodynamic zonation. The applied polynomial averaging of gravity data indicated the presence of a giant, deep quasi-ring structure in the Eastern Mediterranean, the center of which is located under the Island of Cyprus. Simultaneously, the geometrical center of the revealed structure coincides with the Earth's critical latitude of 35?. A quantitative analysis of the obtained gravitational anomaly made it possible to estimate the depth of the upper edge of the anomalous body as 1650?1700 km. The GPS vector map coinciding with the gravitational trend indicates counterclockwise rotation of this structure. Review of paleomagnetic data on the projection of the discovered structure into the earth's surface also confirms its counterclockwise rotation. The analysis of the geoid anomalies map and seismic tomography data commonly approve presence of this deep anomaly. The structural and geodynamic characteristics of the region and paleobiogeographic data are consistent with the proposed physical-geological model. Comprehensive analysis of petrological, mineralogical, and tectonic data suggests a relationship between the discovered deep structure and near-surface processes. The revealed geological deep structure sheds light on specific anomalous effects in the upper crustal layer, including the high-intensity Cyprus gravity anomaly, counterclockwise rotation of the Mesozoic terrane belt, configuration of the Sinai plate, and the asymmetry of sedimentary basins along the continental faults.
DS202110-1612
2021
Eppelbaum, L.V., Katz, Y.I.Tectono-paleomagnetic mapping as unique combined interpretation tool: implication in geologically complex regions of Israel ( eastern Mediterranean).Proceedings of the VIII International Scientific Conference "Geophysics and Geodynamics" held Lviv, Ukraine., 5p. PdfEurope, Israelgeophysics - magnetics

Abstract: The eastern Mediterranean is a tectonically complex region evolving in the long term located in the midst of the progressive Afro-Eurasian collision. Despite years of investigation, its geological-geophysical structure is not completely known. At the same time, the recent discovery of large gas deposits has attracted the attention of many researchers to this region. For instance, the latest U. S. Geological Survey estimates using conventional assessment methodology suggest that there are on the order of 1.7 billion barrels of recoverable oil and more than 4 trillion m3 of recoverable gas in the Levant Basin [1]. This highlights the need for analysis of the paleogeographical conditions that can yield deep paleotectonic criteria for oil and gas discovery in this region. For this purpose, isopach maps of the Middle-Upper Jurassic and Lower Cretaceous were generated from detailed examinations of numerous well sections and the most sig- nificant outcroppings in the eastern Mediterranean. The maps confirm an earlier model of continental accretion [2]. In particular, abrupt changes in the trend and thickness of the Early Mesozoic formations coincide with the terrane boundaries. These compiled isopach maps also pinpoint significant distinctions between the Arabian and Sinai plates on the one hand and the Syrian arc on the other. A new tectonic map of the eastern Mediterranean is presented that first of all integrates geophysical satellite-derived gravity and airborne magnetic fields, as well as tectonic-structural, paleo-geographical and facial analyses. The results have clear implications for hydrocarbon prospecting in this region.
DS202102-0184
2020
Evans, R.Grading fancy shaped diamonds. Gems & Gemology , Vol. 29, 4, p. 31. pdfGlobalgemmology
DS202110-1613
2021
Faccincani, L., Faccini, B., Casetta, F., Mazzurchelli, M., Nastola, F., Coltorti, M.EoS of mantle minerals coupled with composition and thermal state of the lithosphere: inferring the density structure of peridotitic systems.Lithos, Vol. 401-404, 12p. PdfMantle peridotites

Abstract: Unravelling the physical state and properties of mantle rocks is crucial for understanding both plate tectonics, seismic activity, and volcanism. In this context, the knowledge of accurate elastic parameters of constituent mineral phases, and their variations with pressure (P) and temperature (T), is an essential requirement, that coupled with the thermal state of the lithosphere can provide a better understanding of its petrophysics and thermochemical structure. In this paper, we present an assessment of the thermoelastic parameters [in the form of P-V-T-K Equations of State (EoS)] of orthopyroxene, clinopyroxene, spinel and garnet based on X-Ray diffraction data and direct elastic measurements available in literature. The newly developed EoS are appropriate to describe the elastic behaviour of these phases under the most relevant P-T conditions and bulk compositions of the Earth's mantle. In combination with the published EoS for mantle olivine and magnesiochromite, these EoS are suitable to calculate the physical properties of mantle peridotites and their variation with P and T. Thanks to these EoS, we can evaluate how the variations in bulk composition and thermal regimes affect the density structure of the lithospheric mantle. Accordingly, the density structure of fertile and depleted peridotitic systems was calculated along the 35, 45 and 60 mWm?2 geothermal gradients at P comprised between 1 and 8 GPa. Under very cold geothermal gradients, the density of both fertile and depleted peridotitic systems progressively increases with depth, whereas under relatively hot conditions a first downwards decrease from 1 to ca 3 GPa is observed, followed by an increase downward. In mantle sections characterized by intermediate geotherms (45 mWm?2), the behaviour of the two systems differs up to ca 4 GPa, as the density of the depleted system remains nearly constant down to this depth whereas it moderately increases in the fertile system. The results of our simplified parameterisation, in agreement with classical thermodynamic modelling, indicate that the density structure of the lithospheric mantle is predominantly controlled by the P - T gradient variations, with some compositional control mostly arising at cold-intermediate thermal conditions. Integrated by geophysical and thermodynamic modelling, the newly developed and selected EoS could provide an alternative strategy to infer the elastic properties of mineral phases and peridotite rocks, under the most relevant P-T conditions and compositions of the Earth's mantle, without requiring sets of end-member properties and solution models.
DS202109-1465
2012
Farrell, J.M.The impact of the mineral and petroleum resources development act, ACT 28 of 2002 ( MPRDA) on th sustainability of the alluvial diamond mining sector in the northern Cape Province.Msc thesis, see Cover second page for pdf 213p.Africa, South Africalegal
DS202108-1282
2019
Fedoraeva, A.S., Shatskiy, A., Litasov, K.D.The join CaCO3 -CaSiO3 at 6 Gpa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. ** dateInternational Journal of High Pressure Research, Vol. 39, 4, pp. 547-560.RussiaUHP
DS202102-0185
2020
Fegley, B., Lodders, K., Jacobson, N.S.Volatile element chemistry during accretion of the Earth.Geochemistry, Vol. 80, doi.org/10.1016/ j.chemer. 2019.125594 40p. PdfMantlegeochemistry

Abstract: We review some issues relevant to volatile element chemistry during accretion of the Earth with an emphasis on historical development of ideas during the past century and on issues we think are important. These ideas and issues include the following: (1) whether or not the Earth accreted hot and the geochemical evidence for high temperatures during its formation, (2) some chemical consequences of the Earth’s formation before dissipation of solar nebular gas, (3) the building blocks of the Earth, (4) the composition of the Earth and its lithophile volatility trend, (5) chemistry of silicate vapor and steam atmospheres during Earth’s formation, (6) vapor - melt partitioning and possible loss of volatile elements, (7) insights from hot rocky extrasolar planets. We include tabulated chemical kinetic data for high-temperature elementary reactions in silicate vapor and steam atmospheres. We finish with a summary of the known and unknown issues along with suggestions for future work.
DS202102-0186
2021
Feng, P., Wang, L., Brown, M., Johnson, T.E., Kylander-Clark, A., Piccoli, P.M.Partial melting of ultrahigh pressure eclogite by omphacite-breakdown facilitates exhumation of deeply-subducted crust.Earth and Planetary Science Letters, Vol. 554, doi.org/10.1016/ j.epsl.2020. 116664 13p. PdfMantleeclogite

Abstract: Results from numerical modelling and experimental petrology have led to the hypothesis that partial melting was important in facilitating exhumation of ultrahigh-pressure (UHP) metamorphic rocks from mantle depths. However, the melting reactions responsible are rarely well-documented from natural examples. Here we report microstructural features and compositional data that indicate in situ partial melting dominated by breakdown of omphacite in UHP eclogite from the Sulu belt, China. Diagnostic microstructures include: (i) the presence of in situ leucosome pockets composed of plagioclase, euhedral amphibole, minor K-feldspar and epidote within host zoisite- and phengite-bearing eclogite; (ii) skeletal omphacite within the leucosome pockets that has a lower jadeite content (25-45 mol.%) than rock-forming omphacite (39-54 mol.%); and, (iii) seams of Na-rich plagioclase that extend along grain boundaries separating phengite, quartz and zoisite, and which commonly exhibit low dihedral angles where they terminate at triple grain-boundary junctions. Major oxide proportions of 57 leucosome pockets, calculated using mineral modes and compositions, yield leucodiorite bulk compositions characterized by intermediate SiO2, high Al2O3 and Na2O, and low K2O contents. In primitive mantle-normalised trace element diagrams, the leucosome pockets show enrichment in large ion lithophile elements, U, Pb, Zr, Hf and Ti, but depletion in Th and Ta, patterns that are similar to those of rock-forming omphacite. Rather than forming predominantly by breakdown of phengite and/or zoisite, as widely proposed in the literature, the leucosome pockets have petrographic characteristics and major oxide and trace element compositions that are consistent with partial melting dominated by omphacite breakdown. Based on conventional thermobarometry, the eclogite was exhumed from pressure-temperature (P-T) conditions of 3.6-3.1 GPa and 900-840 °C. Partial melting led to the formation of the leucosome pockets, which equilibrated with the rims of surrounding rock-forming garnet and pyroxene during crystallisation. Conventional thermobarometry using rim compositions yields P-T conditions of 1.6-1.2 GPa and 780-690 °C, broadly consistent with calculated phase equilibria and Ti-in-zircon temperatures from zircon overgrowths. Weighted mean ages of ca 217-214 Ma from thin overgrowths on zircon are interpreted to record melt crystallisation. This study provides insight into an overlooked mechanism by which eclogites partially melt during exhumation from UHP conditions, and permits a better understanding of the processes that assist deeply-subducted continental crust to return to shallower depths.
DS202101-0009
2020
Ferrand, T.P.Conductive channels in the deep oceanic lithosphere could consist of garnet pyroxenites at the fossilized lithosphere-asthenosphere boundary.Minerals MDPI, Vol. 10, 1107, doi.10.3390/ min10121107 28p. PdfMantlegeophysics - magnetotellurics

Abstract: Magnetotelluric (MT) surveys have identified anisotropic conductive anomalies in the mantle of the Cocos and Nazca oceanic plates, respectively, offshore Nicaragua and in the eastern neighborhood of the East Pacific Rise (EPR). Both the origin and nature of these anomalies are controversial as well as their role in plate tectonics. The high electrical conductivity has been hypothesized to originate from partial melting and melt pooling at the lithosphere-asthenosphere boundary (LAB). The anisotropic nature of the anomaly likely highlights high-conductivity channels in the spreading direction, which could be further interpreted as the persistence of a stable liquid silicate throughout the whole oceanic cycle, on which the lithospheric plates would slide by shearing. However, considering minor hydration, some mantle minerals can be as conductive as silicate melts. Here I show that the observed electrical anomaly offshore Nicaragua does not correlate with the LAB but instead with the top of the garnet stability field and that garnet networks suffice to explain the reported conductivity values. I further propose that this anomaly actually corresponds to the fossilized trace of the early-stage LAB that formed near the EPR about 23 million years ago. Melt-bearing channels and/or pyroxenite underplating at the bottom of the young Cocos plate would transform into garnet-rich pyroxenites with decreasing temperature, forming solid-state high-conductivity channels between 40 and 65 km depth (1.25-1.9 GPa, 1000-1100 °C), consistently with experimental petrology.
DS202104-0575
2020
Ferreira, A.C.D., Dantas, E.L., Fuck, R.A.The previously missing c. 2.9 Ga high-K continental crust in West Gondwana revealed in northwest Brazil. Terra Nova, 10.1111/ter.12504 11p. PdfSouth America, Brazil, Borboremaalkaline rocks

Abstract: 2.9 Ga is an uncommon magmatic age in Archean evolution worldwide, especially in West Gondwana. We identified so far unknown 2.97-2.92 Ga high?K calc?alkaline magmatism in the Borborema Province, northeast Brazil. It appears to indicate that the transition to high?K magmas occurred before c. 2.7 Ga in Earth's history. The 2.9 Ga protoliths were reworked and progressively changed composition to 2.65 Ga and 2.25 Ga higher?K granites in early magmatic arcs. Therefore, despite several reworking events from the Archean to Proterozoic times, these rare relicts of K?rich magmatism indicate that reworking of felsic components was significant for the growth and differentiation of continental crust from c. 2.9 Ga onwards in West Gondwana.
DS202102-0187
2021
Fichtner, C.E., Schmidt, M.W., Liebske, C., Bouvier, A-S., Baumgartner, L.P.Carbon partitioning between metal and silicate melts during Earth accretion.Earth and Planetary Science Letters, Vol. 554, doi.org/10.1016/ j.epsl.2020. 116659 12p . PdfMantlecarbon

Abstract: In the accreting Earth and planetesimals, carbon was distributed between a core forming metallic melt, a silicate melt, and a hot, potentially dense atmosphere. Metal melt droplets segregating gravitationally from the magma ocean equilibrated near its base. To understand the distribution of carbon, its partitioning between the two melts is experimentally investigated at 1.5-6.0 GPa, 1300-2000 °C at oxygen fugacities of ?0.9 to ?1.9 log units below the iron-wuestite reference buffer (IW). One set of experiments was performed in San Carlos olivine capsules to investigate the effect of melt depolymerization (NBO/T), a second set in graphite capsules to expand the data set to higher pressures and temperatures. Carbon concentrations were analyzed by secondary ionization mass spectrometry (SIMS) and Raman spectra were collected to identify C-species in the silicate melt. Partition coefficients are governed by the solubility of C in the silicate melt, which varies from 0.01 to 0.6 wt%, while metal melts contain ?7 wt% C in most samples. C solubility in the silicate melt correlates strongly with NBO/T, which, in olivine capsules, is mostly a function of temperature. Carbon partition coefficients DCmetal/silicate at 1.5 GPa, 1300-1750 °C decrease from 640(49) to 14(3) with NBO/T increasing from 1.04 to 3.11. For the NBO/T of the silicate Earth of 2.6, DCmetal/silicate is 34(9). Pressure and oxygen fugacity show no clear effect on carbon partitioning. The present results differ from those of most previous studies in that carbon concentrations in the silicate melt are comparatively higher, rendering C to be about an order of magnitude less siderophile, and the discrepancies may be attributed to differences in the experimental protocols. Applying the new data to a magma ocean scenario, and assuming present day mantle carbon mantle concentrations from 120 to 795 ppm, implies that the core may contain 0.4-2.6 wt% carbon, resulting in 0.14-0.9 wt% of this element for the bulk Earth. These values are upper limits, considering that some of the carbon in the modern silicate Earth has very likely been delivered by the late veneer.
DS202101-0010
2020
Figueiredo, J.Diamond desire: probing the epistemological entanglements of geology and ethnography at Diamang ( Angola).South African Historical Journal, Vol. 72, 3, pp. 431-460.Africa, Angolahistory

Abstract: In the wake of the Anthropocene there is a growing body of literature questioning the colonial and imperialistic underpinnings of geology, mineralogy and mining sciences. When focused on the African continent, these critiques echo and complement previous analyses of the role that anthropology has played as the ‘handmaiden of colonialism’. This article proposes to liken the two debates by focusing on the ethnographic practices promoted by the Angolan diamond mining company Diamang (1917-1988) during the interwar period. It argues that mineral desire, the greed for mineral resources such as diamonds, copper or gold, was the drive behind the introduction of ethnographic collecting and field-working to the Portuguese colony. The implications of this shift in perspective will be explored regarding the ongoing restitution debate. First, the article demonstrates that the history of the objects collected by Diamang disrupts ‘classic’ readings of the history of Portuguese anthropology focused on ‘disciplinary big men’ and their agendas. Second, it shows how the gathering and interpretation of ethnographic and archaeological data were totally integrated into the extractive apparatus of Diamang. The article then concludes by suggesting that the decolonisation of ethnographic collections must consider their entanglements with mining, geology and mineralogy.
DS202107-1097
2021
Finger, N-P., Kaban, M.K., Tesauro, M., Haeger, C., Mooney, W.D., Thomas, M.A thermo-compositional model of the cratonic lithosphere of South America. Geochemistry, Geophysics, Geosytems, 26p. PdfSouth Americageothermometry

Abstract: The lithosphere and upper mantle of South America is investigated using multiple data sets, including the topography, crustal structure, regional seismic tomography, gravity, and mineral physics. These data are jointly inverted to estimate variations in temperature, density and composition in the lithospheric and sub-lithospheric upper mantle to a depth of 325 km. Our results show significant variations in lithospheric properties, including thick, depleted roots beneath large parts of the Amazon, São Francisco, and Paranapanema Cratons. However, portions of some cratons, such as the western Guyana Shield, lack a depleted root. We hypothesize that these regions either never developed a depleted root, or that the root was rejuvenated by lithospheric processes.
DS202102-0188
2020
Fiorentini, M.L., O'Neill, C., Giuliani, A., Choi, E., Maas, R., Pirajno, F., Foley, S.Bushveld superplume drove Proterozoic magmatism and metallogenesis in Australia. Nature Scientific Reports, doi.org/10.1038/ s41598-020-76800-0 10p. PdfAustralia, Africa, South Africaalkaline magmatism

Abstract: Large-scale mantle convective processes are commonly reflected in the emplacement of Large Igneous Provinces (LIPs). These are high-volume, short-duration magmatic events consisting mainly of extensive flood basalts and their associated plumbing systems. One of the most voluminous LIPs in the geological record is the ~?2.06 billion-year-old Bushveld Igneous Complex of South Africa (BIC), one of the most mineralised magmatic complexes on Earth. Surprisingly, the known geographic envelope of magmatism related to the BIC is limited to a series of satellite intrusions in southern Africa and has not been traced further afield. This appears inconsistent with the inferred large size of the BIC event. Here, we present new radiometric ages for alkaline magmatism in the Archean Yilgarn Craton (Western Australia), which overlap the emplacement age of the BIC and indicate a much more extensive geographic footprint of the BIC magmatic event. To assess plume involvement at this distance, we present numerical simulations of mantle plume impingement at the base of the lithosphere, and constrain a relationship between the radial extent of volcanism versus time, excess temperature and plume size. These simulations suggest that the thermal influence of large plume events could extend for thousands of km within a few million years, and produce widespread alkaline magmatism, crustal extension potentially leading to continental break-up, and large ore deposits in distal sectors. Our results imply that superplumes may produce very extensive and diverse magmatic and metallogenic provinces, which may now be preserved in widely-dispersed continental blocks.
DS202101-0011
2020
Fischer, K.M., Rychert, C.A., Dalton, C.A., Miller, M.S., Begheim, C., Schutt, D.L.A comparison of oceanic and continental mantle lithsophere.Physics of the Earth and Planetary Interiors, Vol. 309, 106600, 20p. PdfMantlemelting

Abstract: Over the last decade, seismological studies have shed new light on the properties of the mantle lithosphere and their physical and chemical origins. This paper synthesizes recent work to draw comparisons between oceanic and continental lithosphere, with a particular focus on isotropic velocity structure and its implications for mantle temperature and partial melt. In the oceans, many observations of scattered and reflected body waves indicate velocity contrasts whose depths follow an age-dependent trend. New modeling of fundamental mode Rayleigh waves from the Pacific ocean indicates that cooling plate models with asymptotic plate thicknesses of 85-95 km provide the best overall fits to phase velocities at periods of 25 s to 250 s. These thermal models are broadly consistent with the depths of scattered and reflected body wave observations, and with oceanic heat flow data. However, the lithosphere-asthenosphere velocity gradients for 85-95 km asymptotic plate thicknesses are too gradual to generate observable Sp phases, both at ages less than 30 Ma and at ages of 80 Ma or more. To jointly explain Rayleigh wave, scattered and reflected body waves and heat flow data, we propose that oceanic lithosphere can be characterized as a thermal boundary layer with an asymptotic thickness of 85-95 km, but that this layer contains other features, such as zones of partial melt from hydrated or carbonated asthenosphere, that enhance the lithosphere-asthenosphere velocity gradient. Beneath young continental lithosphere, surface wave constraints on lithospheric thickness are also compatible with the depths of lithosphere-asthenosphere velocity gradients implied by converted and scattered body waves. However, typical steady-state conductive models consistent with continental heat flow produce thermal and velocity gradients that are too gradual in depth to produce observed converted and scattered body waves. Unless lithospheric isotherms are concentrated in depth by mantle upwelling or convective removal, the presence of an additional factor, such as partial melt at the base of the thermal lithosphere, is needed to sharpen lithosphere-asthenosphere velocity gradients in many young continental regions. Beneath cratons, numerous body wave conversions and reflections are observed within the thick mantle lithosphere, but the velocity layering they imply appears to be laterally discontinuous. The nature of cratonic lithosphere-asthenosphere velocity gradients remains uncertain, with some studies indicating gradual transitions that are consistent with steady-state thermal models, and other studies inferring more vertically localized velocity gradients.
DS202102-0189
2021
Fischer, K.M., Rychert, C.A., Dalton, C.A., Miller, M.S., Beghein, C., Schutt, D.L.A comparison of oceanic and continental mantle lithosphere.Physics of the Earth and Planetary Interiors, Vol. 309, di.org/10.1016/ jpepi.2020.106600 20p. PdfMantlegeophysics - seismics

Abstract: Over the last decade, seismological studies have shed new light on the properties of the mantle lithosphere and their physical and chemical origins. This paper synthesizes recent work to draw comparisons between oceanic and continental lithosphere, with a particular focus on isotropic velocity structure and its implications for mantle temperature and partial melt. In the oceans, many observations of scattered and reflected body waves indicate velocity contrasts whose depths follow an age-dependent trend. New modeling of fundamental mode Rayleigh waves from the Pacific ocean indicates that cooling plate models with asymptotic plate thicknesses of 85-95 km provide the best overall fits to phase velocities at periods of 25 s to 250 s. These thermal models are broadly consistent with the depths of scattered and reflected body wave observations, and with oceanic heat flow data. However, the lithosphere-asthenosphere velocity gradients for 85-95 km asymptotic plate thicknesses are too gradual to generate observable Sp phases, both at ages less than 30 Ma and at ages of 80 Ma or more. To jointly explain Rayleigh wave, scattered and reflected body waves and heat flow data, we propose that oceanic lithosphere can be characterized as a thermal boundary layer with an asymptotic thickness of 85-95 km, but that this layer contains other features, such as zones of partial melt from hydrated or carbonated asthenosphere, that enhance the lithosphere-asthenosphere velocity gradient. Beneath young continental lithosphere, surface wave constraints on lithospheric thickness are also compatible with the depths of lithosphere-asthenosphere velocity gradients implied by converted and scattered body waves. However, typical steady-state conductive models consistent with continental heat flow produce thermal and velocity gradients that are too gradual in depth to produce observed converted and scattered body waves. Unless lithospheric isotherms are concentrated in depth by mantle upwelling or convective removal, the presence of an additional factor, such as partial melt at the base of the thermal lithosphere, is needed to sharpen lithosphere-asthenosphere velocity gradients in many young continental regions. Beneath cratons, numerous body wave conversions and reflections are observed within the thick mantle lithosphere, but the velocity layering they imply appears to be laterally discontinuous. The nature of cratonic lithosphere-asthenosphere velocity gradients remains uncertain, with some studies indicating gradual transitions that are consistent with steady-state thermal models, and other studies inferring more vertically localized velocity gradients.
DS202104-0576
2021
Foerster, M.W., Selway, K.Melting of subducted sediments reconciles geophysical images of subduction zones.Nature Communications, Vol. 12, 1, doi:10.10.1038/ s41467-021-21657-8 8p. PdfMantlegeophysics - seismic

Abstract: ediments play a key role in subduction. They help control the chemistry of arc volcanoes and the location of seismic hazards. Here, we present a new model describing the fate of subducted sediments that explains magnetotelluric models of subduction zones, which commonly show an enigmatic conductive anomaly at the trenchward side of volcanic arcs. In many subduction zones, sediments will melt trenchward of the source region for arc melts. High-pressure experiments show that these sediment melts will react with the overlying mantle wedge to produce electrically conductive phlogopite pyroxenites. Modelling of the Cascadia and Kyushu subduction zones shows that the products of sediment melting closely reproduce the magnetotelluric observations. Melting of subducted sediments can also explain K-rich volcanic rocks that are produced when the phlogopite pyroxenites melt during slab roll-back events. This process may also help constrain models for subduction zone seismicity. Since melts and phlogopite both have low frictional strength, damaging thrust earthquakes are unlikely to occur in the vicinity of the melting sediments, while increased fluid pressures may promote the occurrence of small magnitude earthquakes and episodic tremor and slip.
DS202108-1283
2021
Fomina, E.N., Kozlov, E.N.Stable ( C, O) radiogenic ( Sr, Nd) isotopic evidence for REE- carbonatite formation processes in Petyayan-Vara ( Vuoriyarvi Massif, NW Russia).Lithos, Vol. 398-399, 17p. PdfRussiaREE

Abstract: A study of radiogenic (Sr, Nd) and stable (C, O) isotopic data for rare earth carbonatites from the Petyayan-Vara field of the Devonian Vuoriyarvi alkaline-ultrabasic massif is presented. The cumulative evidence indicates that the primary igneous rocks of the Petyayan-Vara area are burbankite-bearing magnesiocarbonatites having isotopic signatures of the depleted mantle (?Nd365Ma = 5.0, 87Sr/86Sr(i) = 0.7031, ?13C ca. -4‰, and ?18O ca. 11‰). Interaction of the primary carbonatite melt with the host silicate rocks produced high-Ti carbonatites with a mantle ?13C (ca. -4‰) and isotopically heavy ?18O (ca. 20‰). These rocks trapped K, Na, Mg, CO2, and rare earth elements (REEs) (mainly heavy REEs) from the melt and Si, Al, Fe, Ti, and P from the host rocks. Early post-magmatic exposure of burbankite-bearing carbonatites to a mixture of fluids of crustal and orthomagmatic carbonatite origin caused redistribution of REEs, Ba, and Sr and formation of REE-rich carbonatites with abundant ancylite mineralization. This effect did not disturb the Smsingle bondNd system but induced radiogenic Sr accumulation and a change in C and O isotopic composition towards heavier values. Later, but most likely before denudation, the Petyayan-Vara rocks underwent another metasomatic event involving crustal fluids infiltrating through fracture systems. This event triggered formation of bastnäsite-rich carbonatites with fewer REEs at the expense of ancylite-rich carbonatites, and changed all the isotopic systems in the affected rocks. This model successfully accounts for the evolution of all the carbonatite varieties discovered to date in the Petyayan-Vara field.
DS202110-1614
2021
Forster, M.W., Bussweiler, Y., Prelevic, D., Daczko, N.R., Buhre, S., Mertz-Kraus, R., Foley, S.F.Sediment-peridotite reaction controls fore-arc metasomatism and arc magma geochemical signatures.Geosciences MDPI, Vol. 11, 372, 24p. PdfMantlesubduction

Abstract: Subduction of oceanic crust buries an average thickness of 300-500 m of sediment that eventually dehydrates or partially melts. Progressive release of fluid/melt metasomatizes the fore-arc mantle, forming serpentinite at low temperatures and phlogopite-bearing pyroxenite where slab surface reaches 700-900 °C. This is sufficiently high to partially melt subducted sediments before they approach the depths where arc magmas are formed. Here, we present experiments on reactions between melts of subducted sediments and peridotite at 2-6 GPa/750-1100 °C, which correspond to the surface of a subducting slab. The reaction of volatile-bearing partial melts derived from sediments with depleted peridotite leads to separation of elements and a layered arrangement of metasomatic phases, with layers consisting of orthopyroxene, mica-pyroxenite, and clinopyroxenite. The selective incorporation of elements in these metasomatic layers closely resembles chemical patterns found in K-rich magmas. Trace elements were imaged using LA-ICP-TOFMS, which is applied here to investigate the distribution of trace elements within the metasomatic layers. Experiments of different duration enabled estimates of the growth of the metasomatic front, which ranges from 1-5 m/ky. These experiments explain the low contents of high-field strength elements in arc magmas as being due to their loss during melting of sedimentary materials in the fore-arc.
DS202105-0763
2021
Fosu, B.R., Ghosh, P., Weisenberger, T.B., Spurgin, S., Viladar, S.G.A triple oxygen isotope perspective on the origin, evolution, and diagenetic alteration of carbonatites.Geochimica et Cosmochimica Acta, Vol. 299, pp. 52-68. pdfMantlecarbonatites

Abstract: Carbonatites are unique magmatic rocks that are essentially composed of carbonates, and they usually host a diverse suite of minor and accessory minerals. To provide additional insights on their petrogenesis, triple oxygen isotope analyses were carried out on carbonatites from sixteen localities worldwide in order to assess the behaviour of oxygen isotopes (mass-dependent fractionation) during their formation. The study evaluates the mineralogical differences, i.e., calcite, dolomite, ankerite, and Na-carbonates, and the mode of emplacement (intrusive or extrusive) in the mantle-derived carbonatites to further constrain the triple oxygen isotopic composition (??17O) of the upper mantle. ??17O values in the intrusive calcite carbonatites vary between ?0.003 to ?0.088‰ (n?=?20) and ?0.024 to ?0.085‰ (n?=?5) in the dolomite varieties. We surmise that the magnitude of isotopic fractionation in the different carbonate phases during their formation is similar and thus, the observed variations are independent of mineralogy and may be related to alteration in the rocks. Taking the samples that classify as primary igneous carbonatites altogether, the average ??17O value of the mantle is estimated as ?0.047?±?0.027‰ (1SD, n?=?18) which overlaps those of other mantle rocks, minerals and xenoliths, indicating that the mantle has a relatively homogenous oxygen isotope composition. Two ankerite carbonatites have identical ??17O values as calcite but a few samples, together with pyroclastic tuffs have significantly lower ??17O values (?0.108 to ?0.161‰). This deviation from mantle ??17O signature suggests diagenetic alteration (dissolution and recrystallisation) and mixing of carbonate sources (juvenile and secondary carbonates) which is consistent with the high ?18O and clumped isotope (?47) values recorded in the pyroclastic and ankeritic rocks. In summary, diagenetic alteration driven by fluid-rock interaction at low temperatures, sub-solidus re-equilibration with magmatic waters, and the incorporation of secondary carbonates altogether facilitate the alteration of original isotopic compositions of carbonatites, obliterating their primary mantle signatures.
DS202109-1466
2021
Frank, M.G.Flight of the diamond smugglers: a tale of pigeons, obsession, and greed along the coastal South Africa.Icon books available through Jonathan Ball Publishers, Amazon approx 15.00 224p. Africa, South Africabook
DS202104-0577
2021
Fritsch, E.Revealing the formation secrets of the Matryosha diamond.Journal of Gemmology, Vol. 37, 5, pp. 528-533.Russiadiamond genesis
DS202105-0764
2021
Fuston, S., Wu, J.Raising the Resurrection plate from an unfolded-slab plate tectonic reconstruction of northwestern North America since early Cenozoic time.Geological Society of America Bulletin, Vol. 133, pp. 1128-1140.United Statestectonics

Abstract: The configuration of mid-ocean ridges subducted below North America prior to Oligocene time is unconstrained by seafloor isochrons and has been primarily inferred from upper-plate geology, including near-trench magmatism. However, many tectonic models are permitted from these constraints. We present a fully kinematic, plate tectonic reconstruction of the NW Cordillera since 60 Ma built by structurally unfolding subducted slabs, imaged by mantle tomography, back to Earth’s surface. We map in three-dimensions the attached Alaska and Cascadia slabs, and a detached slab below western Yukon (Canada) at 400-600 km depth that we call the “Yukon Slab.” Our restoration of these lower plates within a global plate model indicates the Alaska slab accounts for Pacific-Kula subduction since ca. 60 Ma below the Aleutian Islands whereas the Cascadia slab accounts for Farallon subduction since at least ca. 75 Ma below southern California, USA. However, intermediate areas show two reconstruction gaps that persist until 40 Ma. We show that these reconstruction gaps correlate spatiotemporally to published NW Cordillera near-trench magmatism, even considering possible terrane translation. We attribute these gaps to thermal erosion related to ridge subduction and model mid-ocean ridges within these reconstruction gap mid-points. Our reconstructions show two coeval ridge-trench intersections that bound an additional “Resurrection”-like plate along the NW Cordillera prior to 40 Ma. In this model, the Yukon slab represents a thermally eroded remnant of the Resurrection plate. Our reconstructions support a “northern option” Farallon ridge geometry and allow up to ?1200 km Chugach terrane translation since Paleocene time, providing a new “tomographic piercing point” for the Baja-British Columbia debate.
DS202102-0190
2019
Gaillard, F., Sator, N., Guillot, B., Massuyeau, M.The link between the physical and chemical properties of carbon-bearing melts and their application for geophysical imaging of Earth's mantleResearchgate , DOI: 10.1017/ 9781108677950.007 26p. Pdfmantlecarbon

Abstract: Significant investment in new capacities for experimental research at high temperatures and pressures have provided new levels of understanding about the physical properties of carbon in fluids and melts, including its viscosity, electrical conductivity, and density. This chapter reviews the physical properties of carbon-bearing melts and fluids at high temperatures and pressures and highlights remaining unknowns left to be explored. The chapter also reviews how the remote sensing of the inaccessible parts of the Earth via various geophysical techniques - seismic shear wave velocity, attenuation, and electromagnetic signals of mantle depths - can be reconciled with the potential presence of carbon-bearing melts or fluids.
DS202102-0191
2021
Galimov, E.M., Kaminsky, F.V.Diamond in oceanic lithosphere. Volcanic diamonds and diamonds in ophiolites.Geochemistry International, Vol. 59, 1, pp. 1-11. pdfRussiadeposit - Tolbachik, Kamchatka
DS202103-0379
2021
Ganbat, A., Tsujimori, T., Boniface, N., Pastor-Galan, D., Aoki, S., Aoki, K.Crustal evolution of Paleoproterozoic Ubendian Belt ( SW Tanzania) western margin: a central African shield amalgamation take.Gondwana Research, Vol. 91, pp. 286-306. pdfAfrica, Tanzaniamagmatism

Abstract: The Ubendian Belt between the Archean Tanzania Craton and the Bangweulu Block, represents a Paleoproterozoic orogeny of these two constituents of the Congo Craton assembled at ~1.8?Ga, forming the Central African Shield, during the Columbia Supercontinent cycle and consolidated during the Gondwana assembly. Metagranitoids from the Southern and Northern Ufipa Terranes (Western Ubendian Corridor) and those of the Bangweulu Block are compositionally similar and are contemporaneous. The protolith of the Ufipa Terrane is originated from the collided crustal rocks of the Bangweulu Block. New LA-ICPMS zircon U-Pb age of metagranitoids and granoporphyries confirmed magmatic events from 1.89 to 1.85?Ga. The metagranitoids of the Western Ubendian Corridor and that of the Bangweulu Block cannot be distinguished by their trace element characteristics and ages. Geochemically, they belong to high-K calc-alkaline to tholeiite series. The 1.89-1.85?Ga metagranitoids and granoporphyries are characterized by evolved nature, which are common for slab-failure derived magmas. Such geochemical features and the presence of ~2.0?Ga eclogites suggest an Orosirian oceanic subduction and subsequent slab break-off. Melt derived from the mafic upper portion of torn slab led to the partial melting of crust which formed high-K and calc-alkaline, I- and S-type magmatism in the Bangweulu Block and the Ufipa Terrane. Zircons from two metagranites from the Northern Ufipa Terrane show Neoproterozoic (Ediacaran) overprints at ~570?Ma, suggesting the Bangweulu Block collided with the continental margin of the Tanzania Craton. However, we found non-annealed Orosirian apatites in metagranitoids from the Southern Ufipa Terrane and the Kate-Ufipa Complex, implying that areal heterogeneity of the Pan-African tectonothermal overprint in the Ufipa Terrane. All evidences suggest that the Bangweulu Block and the Ubendian Belt participated in the amalgamation of the Central African Shield as separated continents surrounded by oceanic crusts during the Paleoproterozoic Eburnean and the Neoproterozoic Pan-African orogenies.
DS202107-1098
2021
Gao, L-G., Chen, Y-W., Bi, X-W., Gao, J.F., Chen, W.T., Dong, S-H., Luo, J-C., Hu, R-Z.Genesis of carbonatite and associated U-Nb-REE mineralization at Huayang-chuan, central China: insights from mineral paragenesis, chemical and Sr-Nd-C-O isotopic compositions of calcite.Ore Geology Reviews, doi.org/10.1016/j.oregeorev.2021.104310, 50p. PdfChinacarbonatite, REE

Abstract: The Huayangchuan deposit in the North Qinling alkaline province of Central China is a unique carbonatite-hosted giant U-Nb-REE polymetallic deposit. The mineralization is characterized by the presence of betafite, monazite, and allanite as the main ore minerals, but also exhibit relatively high budgets of heavy rare earth elements (HREE = Gd-Lu and Y). The origin of carbonatites has long been controversial, thus hindering our understanding of the genesis of the deposit. Here, we conducted an in-situ trace elemental, Sr-Nd isotopic, and bulk C-O isotopic analyses of multi-type calcites in the deposit. Two principal types (Cal-I and Cal-II), including three sub-types (Cal-I-1, Cal-I-2 and Cal-I-3) of calcites were identified based on crosscutting relationships and calcite textures. Texturally, Cal-I calcites in carbonatites display cumulates with the grain size decreasing from early coarse- (Cal-I-1) to medium- (Cal-I-2) and late fine-grained (Cal-I-3), whereas Cal-II calcites coexist with zeolite displaying zeolite-calcite veinlets. Geochemically, Cal-I calcites contain relatively high REE(Y) (151-2296 ppm), Sr (4947-9566 ppm) and Na (28.6-390 ppm) contents, characterized by right- to left-inclined flat distribution patterns [(La/Yb)N=0.2-4.2] with enrichment of HREE(Y) (136-774 ppm), whereas Cal-II calcites display low REE, Sr and undetectable Na contents, characterized by a right-inclined distribution pattern [(La/Yb)N=13.5, n=16]. The U-Nb-REE mineralization, accompanied with intense and extensive fenitization and biotitization, is mainly associated with the Cal-I-3 calcites which show flat to relatively left-inclined flat REE distribution patterns [(La/Yb)N=0.2-1.0]. Isotopic results show that Cal-I calcites with mantle signatures are primarily igneous in origin, whereas Cal-II are hydrothermal, postdating the U-Nb-REE mineralization. Cal-I calcites (Cal-I-1, Cal-I-2 and Cal-I-3) from mineralized and unmineralized carbonatites, displayed regular changes in REE, Na and Sr contents, but similar trace element distribution patterns and Sr-Nd-C-O isotopic signatures, indicating that these carbonatites originated from the same enriched mantle (EM1) source by low-degree partial melting of HREE-rich carbonated eclogites related to recycled marine sediments. The combination of trace elements and Sr-Nd isotopic composition of calcites further revealed that these carbonatites have undergone highly differentiated evolution. Such differentiation is conducive to the enrichment of ore-forming elements (U-Nb-REE) in the late magmatic-hydrothermal stages owing to extensive ore-forming fluids exsolved from carbonatitic melts. The massive precipitation of the U-Nb-REE minerals from ore-forming hydrothermal fluids may have been triggered by intense fluid-rock reactions indicated by extensive and intense fenitization and biotitization. Therefore, the Huayangchuan carbonatite-related U-Nb-REE deposit may have formed by a combination of processes involving recycled U-Nb-REE-rich marine sediments in the source, differentiation of the produced carbonatitic magmas, and subsequent exsolution of U-Nb-REE-rich fluids that precipitated ore minerals through reactions with wall rocks under the transitional tectonic regime from compression to extension at the end of Late Triassic.
DS202111-1766
2021
Garanin, V., Garanin, K., Kriulina, G., Samosorov, G.Diamonds from the Arkangelsk Province, NW Russia. ENGLISHSpringer Mineralogy http://www.springer.com/series/13488, Reference to the book only! Russia, Arkangelskdiamond - morphology

Abstract: Provides researchers the latest data on the Arkhangelsk and Yakutian Diamondiferous Provinces in Russia. Enriches readers’ understanding of diamond geology and its evolution. Illustrates the complete process of diamond formation in the Archangelsk Diamondiferous Provinces.
DS202108-1284
2021
Garanin, V., Garanin, K., Kriulina, G., Samosorov, G.Geological summary of kimberlites and related rocks in the Archangelsk diamondiferous region ( ADR).Book: Diamonds from the Arkangelk Province, NW Russia., July doi.10.1007/978-3-030-35717-7_1 30p.Russia, Archangelkimberlites

Abstract: The chapter headlines the historical perspective of discovering the Arkhangelsk Diamondiferous Region, previously was also called the Arkhangelsk Diamondiferous Province (hereinafter named ADR), offers the contemporary concept of the ADR geology, and location of kimberlite fields and magmatic rock bodies in its area. It describes the layout, structure, mineralogical characteristics and lithology of pipes from the Grib and Lomonosov deposits. It gives a snapshot of the alkaline ultrabasic rocks’ representatives from the Zimny Bereg area of the ADR that is not covered by the deposits.
DS202112-1927
2021
Gardes, E., Gilbouin, D., Radiquet, B., David, A., Prellier, W., Marquardt, K.Magnesium transport in olivine mantle: new insights from miniturized study of volume and grain boundary diffusion in Mg2Si04 bi-crystals.Contribution to Mineralogy and Petrology, Vol. 176, 99 16p. PdfMantleolivine

Abstract: We report experimental measurements of volume and grain boundary diffusion of 26Mg in Mg2SiO4 bi-crystals at asthenosphere temperatures as a ground reference for olivine. By analysis of literature and combination with previous data, we provide Arrhenius laws D = D0 exp(- E/RT) at ambient pressure for volume diffusion of Mg in Mg2SiO4 in the intrinsic regime along the three crystallographic axes as well as grain boundary diffusion.
DS202106-0936
2021
Garel, F., Thoraval, C.Lithosphere as a constant-velocity plate: chasing a dynamical LAB in a homogenous mantle material.Physics of the Earth and Planetary Interiors, Vol. 316, 106710 13p. PdfMantlegeophysics - seismic

Abstract: While the lateral limits of tectonic plates are well mapped by seismicity, the bottom boundary of the lithosphere, the uppermost rigid layer of the Earth comprising both crust and shallow mantle, remains elusive. The lithosphere is usually viewed as consisting of cold, rigid, internally undeformed blocks that translate coherently. The base of the lithosphere, designated as the lithosphere-asthenosphere boundary (LAB), may thus be characterised by different physical fields: temperature, viscosity, strain rate and velocity. The LABs as defined by these different fields are investigated here using thermo-mechanical models of plate and upper mantle dynamics, either in a transient subduction or in a steady-state plate-driven set-up. Mantle material is modelled as homogeneous in composition with a viscosity that depends on temperature, pressure and strain rate. In such a system, the thermo-mechanical transition between lithosphere and asthenosphere occurs over a finite depth interval in temperature, strain rate and velocity. We propose that the most useful dynamical LAB is defined as the base of a “constant-velocity” plate (i.e. the material translating at constant horizontal velocity). The bottom part of this plate deforms at strain rates comparable to those in the underlying asthenosphere mantle: the translating block is not fully rigid. Thermal structure exerts a major control on this dynamical LAB, which deepens with increasing plate age. However, the surface plate velocity, the asthenospheric flow geometry and magnitude also influence the depth of the dynamical LAB, as well as the thickness of the deformed region at the base of the constant-velocity plate. The mechanical transitions from lithosphere to asthenosphere adjust when mantle dynamics evolves. The dynamical and thermo-mechanical LABs occur within a thermal lithosphere-asthenophere gradual transition, similar to the one imaged by geophysical proxies. The concept of a constant-velocity plate can be extended to a constant-velocity subducting slab, which also deforms at its borders and drags the surrounding mantle. This framework is relevant to quantify mass transport within the Earth's mantle.
DS202110-1615
2021
Gatta, G.D., Hradil, K., Meven, M.Where is the hydrogen? ( neutron diffraction technology) Elements, Vol. 17, pp. 163-168.Mantlehydrogen

Abstract: How is hydrogen distributed among minerals and how is it bonded in their crystal structures? These are important questions, because the amount of hydrogen and the bonding configuration of hydrogen in crystalline materials governs many of that material’s properties: its thermal and compressional behavior, P-T phase stability, rheology, and electrical conductivity. A reliable reconstruction of the Earth’s interior, or the prediction of mineral transformations in complex industrial processes, must account for these parameters. Neutron diffraction can locate hydrogen sites in mineral structures, reveal any static or dynamic hydrogen disorder, help define the libration regime of hydrogen, and elucidate hydrogen-bonding configurations. Thus, that most elusive element for X-ray probes is perfectly detectable using neutrons.
DS202109-1467
2021
Gems & JeweleryPerseverance on the banks of the Itoco River.Gems & Jewelery, Vol. 30, 2, p. 8.South America, Colombiaemerald
DS202109-1468
2021
Gems & JeweleryWhat will happen to fancy pink diamonds? Argyle closure.Gems & Jewelery, Vol. 30, 2, pp. 14-15.Australia, globaldeposit - Argyle
DS202102-0192
2021
Geng, Y., Du, L., Kuang, H., Liu, Y.Ca. 1.7 Ga magmatism on southwestern margin of the Yangtze block: response to the breakup of Columbia.Acta Geologica Sinica, Vol. 94, 6, pp. 2031-2052.Chinamagmatism

Abstract: This paper presents some data of the Jiaopingdu gabbro and Caiyuanzi granite at the southwestern margin of the Yangtze Block, on the geochemical compositions, zircon LA-ICP-MS U-Pb ages and Hf isotopic data. The Jiaopingdu gabbro gives the age of 1721 ± 5 Ma, the Caiyuanzi granite 1732 ± 6 Ma and 1735 ± 4 Ma, and the Wenjiacun porphyry granite 1713 ± 4 Ma, suggesting nearly contemporaneous formation time of the gabbro and granite. The bimodal feature is demonstrated by the gabbro SiO2 content of 44.64-46.87 wt% and granite 73.81-77.03 wt%. In addition, the granite has high content of SiO2 and Na2O + K2O, low content of Al2O3 and CaO, enriched in REEs (except Eu) and Zr, Nb, Ga and Y, depleted in Sr, implying it belongs to A?type granite geochemistry and origin of within?plate environment. The zircon ?Hf(t) of the granite and gabbro is at the range of 2-6, which is near the 2.0 Ga evolution line of the crust, implying the parent magma of the gabbro being derived from the depleted mantle and a small amount of crustal material, and the parent magma of the granite from partial melting of the juvenile crust and some ancient crustal material at the same time. Compared with 1.8-1.7 Ga magmatism during breakup of other cratons in the world, we can deduce that the Columbia has initially broken since ca. 1.8 Ga, and some continental marginal or intra?continental rifts occurred at ca. 1.73 Ga.
DS202103-0380
2021
Geophysics ContractorsCompiled List of geophysical contractors sent out to members of SEGMIN. *** not specific to diamonds Geophysical contractors, SEGMIN website 13p. PdfGlobalgeophysics
DS202107-1099
2021
Giovannini, A.L., Bastos Neto, A.C., Porto, C.G., Takehara, L., Pereira, V.P., Bidone, M.H.REE mineralization (primary, supergene and sedimentary) associated to the Morro dos Seis Lagos Nb( REE, Ti) deposit (Amazonas, Brazil).Ore Geology Reviews, doi.org/10.1016/ j.oregeorev. 2021.104308 59p. PdfSouth America, BrazilREE

Abstract: In the Morro dos Seis Lagos Nb (Ti, REE) deposit (MSLD), Amazonas state, Brazil, there are four types of REE mineralization: primary, associated to siderite carbonatite; supergene, associated to laterite profile; and sedimentary (detrital and authigenic). The mineralogical and geochemical evolutions of the REE in these domains are integrated into a comprehensible metallogenic model. The main primary ore in the core siderite carbonatite is 52 m thick with 1.47 wt% REE2O3 mainly in monazite-(Ce) and bastnäsite. However, considering the entire section intersected in the core siderite carbonatite, the average grade drops to 0.7 wt% REE2O3 mainly contained in thorbastnasite. In the border siderite carbonatite, the REE mineralization is hydrothermal [rhabdophane-(Ce) and REE-rich gorceixite]. The LREE and phosphates are concentrated at the reworked laterites from where the HREE were leached. With the advance of lateritization, pyrochlore was completely decomposed. The final secondary Ce-pyrochlore was progressively enriched in Ce4+ with loss in REE3+, resulting in the breakdown of the structure and release Ce under strongly oxidizing conditions (high Ce4+/Ce3+) thus forming extremely pure cerianite-(Ce). This mineral occurs intercalated with goethite bands in the lower part of the weathering profile, represented by the brown laterite, and forms intergrowth with hollandite in the manganiferous laterite, formed in a more alkaline environment closer to the water table. The brown laterite has 1.30 wt% REE2O3, the manganese laterite has 1.54 wt% REE2O3, of which 1.42 wt% is Ce2O3. Tectonic and karstic processes over the carbonatite formed several sedimentary basins. In the Esperança Basin, the sedimentary record (233 m thick) shows the whole evolution of the MSLD. The base of the basin (layer 5) is formed by abundant carbonatite fragments, have florencite-(Ce) mineralization with 1.07 wt% REE2O3; layer 4 is formed by carbonatite fragments interbedded with clayey bed; layer 3 is a rhythmite deposited in a lacustrine environment, with clasts of ferruginous materials related to early stages of carbonatite alteration; layer 2 is made up by clays, is rich in organic matter, has authigenic florencite-(Ce), florencite-(La) and base metals. This layer marks the inversion of the relief and the input into the basin of REE leached from the upper laterites, carried by the groundwater flow; layer 1 was formed by the oxidation of the upper part of layer 2. Layers 1 + 2 have 73 m thick and average of 1.72 wt% REE2O3.
DS202103-0381
2021
Giro, J.P., Almeida, J., Guedes, E., Bruno, H.Tectonic inheritances in rifts: the meaning of NNE lineaments in the continental rift of SE Brazil.Journal of South American Earth Sciences, Vol. 108, 103255. 17p. PdfSouth America, Brazillineaments, tectonics

Abstract: The effect of previous structures inheritance is known to be important in the development of tectonic rifts. A series of overlapping structures generally can be represented by lineaments marking the successive tectonic events. We studied the NNE structural lineaments corridor in the central region of the Ribeira Belt. We used a digital elevation model (DEM) and new and previous fieldwork data to investigate the structural control of such lineaments and their relevance for the Brazilian continental margin. Our results suggest that the NNE direction is a crustal weakness zone characterising corridors of intense ductile and brittle deformation which was recurrently reactivated. Aligned NNE Neoproterozoic-Ordovician ductile and brittle structures as foliations, shear zones, lithological boundaries, and fractures filled by pegmatitic veins coincide with the lineaments. During the Cretaceous rift, a transtensional sinistral regime generated NNE T-fractures filled by mafic dykes. In the Cenozoic, the NNE direction is represented by transfer and domino faults developed within a mega accommodation zone in an intracontinental rift system. Our results suggest that the NNE direction was active in this region throughout the Phanerozoic and has high relevance for the structural development of the continental margin of southeastern Brazil.
DS202102-0193
2020
Giuliani, A., Jackson, M.G., Fitzpayne, A., Dalton, H.Remnants of early Earth differentiation in the deepest mantle-derived lavas. ( kimberlite source)PNAS, Vol. 118, 1 e201521118, 9p. PdfMantlekimberlite

Abstract: The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites—volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a 143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic 143Nd/144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core-mantle boundary. PREMA could have been stored in these structures for most of Earth’s history, partially shielded from convective homogenization.
DS202104-0578
2020
Giuliani, A., Jackson, M.G., Fitzpayne, A., Dalton, H.Remnants of early Earth differentiation in the deepest mantle-derived lavas.Proceedings of the National Academy of Sciences PNAS, Vol. 118, 1 e201521118 9p. PdfMantlekimberlite

Abstract: The noble gas isotope systematics of ocean island basalts suggest the existence of primordial mantle signatures in the deep mantle. Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in these lavas require derivation from a mantle source that is geochemically depleted by melt extraction rather than primitive. Here, this apparent contradiction is resolved by employing a compilation of the Sr, Nd, and Hf isotope composition of kimberlites—volcanic rocks that originate at great depth beneath continents. This compilation includes kimberlites as old as 2.06 billion years and shows that kimberlites do not derive from a primitive mantle source but sample the same geochemically depleted component (where geochemical depletion refers to ancient melt extraction) common to most oceanic island basalts, previously called PREMA (prevalent mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isotopic compositions of the kimberlite source to the age of Earth formation yields a 143Nd/144Nd-176Hf/177Hf composition within error of chondrite meteorites, which include the likely parent bodies of Earth. This supports a hypothesis where the source of kimberlites and ocean island basalts contains a long-lived component that formed by melt extraction from a domain with chondritic 143Nd/144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic distribution of kimberlites containing the PREMA component suggests that these remnants of early Earth differentiation are located in large seismically anomalous regions corresponding to thermochemical piles above the core-mantle boundary. PREMA could have been stored in these structures for most of Earth’s history, partially shielded from convective homogenization.
DS202102-0194
2021
Gladkochub, D.P., Donskaya, T.V., Pisarevesky, S.A., Salnikova E.B., Mazukabzov, A.M., Kotov, A.B., Motova, Z.I., Stepanova, A.V., Kovach, V.P.Evidence of the latest Paleoproterozoic ( ~1615 Ma) mafic magmatism the southern Siberia: extensional environments in Nuna subcontinent.Precambrian Research, Vol. 354, doi.org/10.1016 /j.precamres. 2020.10049 14p. PdfRussiaCraton - Siberian
DS202111-1767
2021
Godet, A., Guilmette, C., Labrousse, L., Smit, M.A., Cutts, J.A., Davis, D.W., Vanier, M-A.Lu-Hf garnet dating and the timing of collisions: Paleoproterozoic accretionary tectonics revealed in the southeastern Churchill Province, Trans-Hudson orogen, Canada.Journal of Metamorphic Geology, Vol. 39, 8, 31p. PdfCanadageochronology

Abstract: Dating the onset of continental collision is fundamental in defining orogenic cycles and their effects on regional tectonics and geodynamic processes through time. Part of the Palaeoproterozoic Trans-Hudson Orogen, the Southeastern Churchill Province (SECP) is interpreted to result from the amalgamation of Archean to Palaeoproterozoic crustal blocks (amalgamated as the central Core Zone) that diachronically collided with the margins of the North Atlantic and Superior cratons, resulting in two bounding transpressive orogens: the Torngat and New Quebec Orogens. The SECP exposes mainly gneissic middle to lower orogenic crust in which deformation and amphibolite to granulite facies metamorphism and anatexis overprinted the early geological features classically used to constrain the timing of collisional events. To enable improved tectonic models for the development of the SECP, and the Trans-Hudson as a whole, we investigated granulite facies supracrustal sequences from the Tasiuyak Complex (TC) accretionary prism and the western margin of the North Atlantic Craton—that is, Saglek Block (upper plate)—using a multi-chronometer approach coupled with trace element geochemistry. In particular, the use of garnet Lu-Hf geochronology provides an important minimal time constraint for crustal thickening and collision. Garnet growth in the TC is constrained at 1885 ± 12 Ma (Lu-Hf), indistinguishable from U-Pb age of prograde monazite at 1873 ± 5 Ma. Zircon growth during melt crystallization occurred at 1848 ± 12 Ma. Garnet from the overriding Saglek Block is dated at 2567 ± 4.4 Ma (Lu-Hf) and indicates that gneissic rocks from the upper plate did not record the metamorphic imprint of the Torngat Orogeny. The diachronicity of the integrated metamorphic record across the strike of the SECP is explained by the location of terrane boundaries, consistent with the westward growth of the Churchill plate margin through sequential amalgamation of narrow crustal blocks during accretionary tectonics from c. 1.9 to 1.8 Ga.
DS202104-0579
2021
Godet, A., Guilmette, C.,Labrousse, L., Smit, M.A., Cutts, J.A., Davis, D.W., Vanier, M-A.Lu-Hf garnet dating and the timing of collisions: Paleoproterozoic accretionary tectonics revealed in the southeastern Churchill Province Trans-Hudson Orogen, Canada. Torngat, New QuebecJournal of Metamorphic Geology, doi:10.1111/jmg.12599Canada, Quebeccratons

Abstract: Dating the onset of continental collision is fundamental in defining orogenic cycles and their effects on regional tectonics and geodynamic processes through time. Part of the Palaeoproterozoic Trans?Hudson Orogen, the Southeastern Churchill Province (SECP) is interpreted to result from the amalgamation of Archean to Palaeoproterozoic crustal blocks (amalgamated as the central Core Zone) that diachronically collided with the margins of the North Atlantic and Superior cratons, resulting in two bounding transpressive orogens: the Torngat and New Quebec Orogens. The SECP exposes mainly gneissic middle to lower orogenic crust in which deformation and amphibolite to granulite facies metamorphism and anatexis overprinted the early geological features classically used to constrain the timing of collisional events. To enable improved tectonic models for the development of the SECP, and the Trans?Hudson as a whole, we investigated granulite facies supracrustal sequences from the Tasiuyak Complex (TC) accretionary prism and the western margin of the North Atlantic Craton-that is, Saglek Block (upper plate)-using a multi?chronometer approach coupled with trace element geochemistry. In particular, the use of garnet Lu-Hf geochronology provides an important minimal time constraint for crustal thickening and collision. Garnet growth in the TC is constrained at 1885 ± 12 Ma (Lu-Hf), indistinguishable from U-Pb age of prograde monazite at 1873 ± 5 Ma. Zircon growth during melt crystallization occurred at 1848 ± 12 Ma. Garnet from the overriding Saglek Block is dated at 2567 ± 4.4 Ma (Lu-Hf) and indicates that gneissic rocks from the upper plate did not record the metamorphic imprint of the Torngat Orogeny. The diachronicity of the integrated metamorphic record across the strike of the SECP is explained by the location of terrane boundaries, consistent with the westward growth of the Churchill plate margin through sequential amalgamation of narrow crustal blocks during accretionary tectonics from c. 1.9 to 1.8 Ga.
DS202106-0937
2021
Gomez-Arias, A., Yesares, L., Carabello, M.A., Maleke, M., Vermeulen, D., Nieto, J.M., van Heerden, E., Castillo, J.Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa ( Palabora) complex, South Africa.Journal of Geochemical Exploration, Vol. 224, 106757, 13p. PdfAfrica, South Africadeposit - Palabora

Abstract: A detailed characterization of alkaline tailing ponds and waste rock dumps from Phalaborwa Igneous Complex (PIC) South Africa, has been accomplished. The study goes beyond the environmental characterization of mining wastes, offering the first insight towards the recycling of the wastes as alkaline reagent to neutralize acid industrial wastewater. To achieve these aims, tailings and waste rocks were characterized using a combination of conventional, novel and modified Acid Rock Drainage (ARD) prediction methodologies, as well as South African leachate tests, sequential extractions and pseudo-total digestions. The scarcity of Fe-sulphide minerals and the abundance of alkaline minerals indicated that PIC wastes are not ARD producers. The highest neutralization potential was found in the carbonatite rocks and East tailing samples (range between 289 and 801 kg CaCO3 eq/t). According to the National Environmental Management Waste Act (59/2008) of South Africa, tailing ponds and waste rock dumps from PIC classify as non-hazardous (Type 3 waste). The sequential extractions showed that the different fractions from most of the samples would mostly release sulphate and non-toxic elements, such as Ca, Mg, Na and K, which might be a concern if leached in high concentration. In addition, relatively high concentrations of radionuclides, such as U and Th (average of 6.7 and 36.3 mg/kg, respectively) are present in the non-labile fraction of PIC wastes, while the leachable concentrations were always below 0.006 mg/L. Among PIC wastes, East tailing would be the best option as alkaline reagent to neutralize acid wastewater because of its high neutralization potential and non-harmful leachate composition. In general, this study exposes the shortcomings in mine waste characterization, particularly for alkaline mine wastes, and introduces the assessment of potential revalorization as a novel practice in mine waste characterization that, if extended as a regular practice, would facilitate a circular economy approach to the mining industry with its consequent economic and environmental benefits.
DS202111-1768
2021
Gong, Z., Evans, D.A.D., Youbi, N., Lahna, A.A., Sodelund, U., Malek, M.A., Wen, B., Jing, X., Ding, J., Boumedhdi, M.A., Ernst, R.E.Reorienting the West African craton in Paleoproterozoic-Msoproterozoic supercontinent Nuna.Geology, Vol. 49, 10, pp. 1171-1176. pdfAfrica, west AfricaNuna

Abstract: The location of the West African craton (WAC) has been poorly constrained in the Paleoproterozoic-Mesoproterozoic supercontinent Nuna (also known as Columbia). Previous Nuna reconstruction models suggested that the WAC was connected to Amazonia in a way similar to their relative position in Gondwana. By an integrated paleomagnetic and geochronological study of the Proterozoic mafic dikes in the Anti-Atlas Belt, Morocco, we provide two reliable paleomagnetic poles to test this connection. Incorporating our new poles with quality-filtered poles from the neighboring cratons of the WAC, we propose an inverted WAC-Amazonia connection, with the northern WAC attached to northeastern Amazonia, as well as a refined configuration of Nuna. Global large igneous province records also conform to our new reconstruction. The inverted WAC-Amazonia connection suggests a substantial change in their relative orientation from Nuna to Gondwana, providing an additional example of large-magnitude cumulative azimuthal rotations between adjacent continental blocks over supercontinental cycles.
DS202106-0938
2021
Gonzales, A.New rating system for coloured gemstones.Gems&Jewellery, Vol. 30, 1, p. 31.Globalgemstones
DS202105-0765
2021
Gonzalez-Alvarez, I., Stoppa, F., Yang, X.Y., Porwal, A.Introduction to the special issue, insights on carbonatites and their mineral exploration approach: a challenge towards resourcing critical metals.Ore Geology Reviews, Vol. 133, 104073, 7p. PdfGlobalcarbonatites

Abstract: Population growth and technological progress in the last 50 years have resulted in the global demand for mineral resources increasing by 400% since 1970, and it is further expected to almost double by 2050. This context forecasts a never-seen-before market for some specific mineral commodities, termed critical metals. The resource and supply flow of critical metals would be decisive for the economic well-being of economies in near future. Carbonatites are the most prospective host rocks for Rare Earth Elements (REEs), which constitute some of the most important critical elements. This special issue aims to contribute to the debate on understanding the genesis of carbonatites and their prospectivity for REEs (including exploration strategies), by presenting a wide variety of studies on carbonatites from around the globe.
DS202109-1469
2021
Good, D.J., Hollings, P., Dunning, G., Epstein, R., McBride, J., Jedemann, A., Magnus, S., Bohav, T., Shore, G.A new model for the Coldwell Complex and associated dykes of the Midcontinent Rift, Canada.Journal of Petrology, Vol. 62, 7, 10.1093/petrology/ega036Canadadeposit - Coldwell

Abstract: Mafic intrusions on the NE shoulder of the Midcontinent Rift (Keweenawan LIP), including Cu-PGE mineralized gabbros within the Coldwell Complex (CC), and rift parallel or radial dykes outside the CC are correlated based on characteristic trace element patterns. In the Coldwell Complex, mafic rocks are subdivided into four groups: (1) early metabasalt; (2) Marathon Series; (3) Layered Series; (4) Geordie-Wolfcamp Series. The Marathon Series are correlated with the rift radial Abitibi dykes (1140?Ma), and the Geordie-Wolfcamp Series with the rift parallel Pukaskwa and Copper Island dykes. U-Pb ages determined for five gabbros from the Layered and Marathon Series are between 1107•7 and 1106•0?Ma. Radiogenic isotope ratios show near chondritic (CHUR) ?Nd(1106?Ma) and 87Sr/86Sri values that range from -0•38 to +1•13 and 0•702537 to 0•703944, respectively. Distinctive geochemical properties of the Marathon Series and Abitibi dykes, such as Ba/La (14-37), Th/Nb (0•06-0•12), La/Sm (3•8-7•7), Sr/Nd (21-96) and Zr/Sm (9-19), are very different from those of the Geordie-Wolfcamp Series and a subset of Copper Island and Pukaskwa dykes with Ba/La (8•7-11), Th/Nb (0•12-0•13), La/Sm (6•7-7•9), Sr/Nd (5-7•8) and Zr/Sm (18-24). Each unit exhibits covariation between incompatible element ratios such as Zr/Sm and Nb/La or Gd/Yb, Sr/Nd and Ba/La, and Nb/Y and Zr/Y, which are consistent with mixing relationship between two or more mantle domains. These characteristics are unlike those of intrusions on the NW shoulder of the MCR, but resemble those of mafic rocks occurring in the East Kenya Rift. The results imply that an unusual and long-lived mantle source was present in the NE MCR for at least 34?Myr (spanning the 1140?Ma Abitibi dykes and the 1106?Ma Marathon series) and indicate potential for Cu-PGE mineralization in an area much larger than was previously recognized.
DS202102-0195
2020
Goodden, R.Ocean diamonds - alluvialsGems & Jewellery, Vol. 29, 4, pp. 14-16. pdfAfrica, Namibiaalluvials
DS202111-1769
2019
Gouvea, Y., Stehmann, J.Solanum adamantium, a new narrowly endemic species from a diamondiferous region of the Espinhaco Range in Minas Gerais, Brazil.Systematic Botany, Vol. 44, 4, pp. 923-929. pdfSouth America, Brazilbotany

Abstract: Solanum adamantium is described from Serra de Grão Mogol, located in the Espinhaço range, in northern Minas Gerais State, Brazil. The new species is ecologically and morphologically similar to the prickly species S. buddleiifolium and S. thomasiifolium, from which it differs in a series of vegetative and reproductive characters. We discuss the morphological similarities and differences among these species, as well as certain aspects of the new taxon's ecology and geographic distribution. Images of diagnostic characters, a map of geographical distribution, a preliminary conservation assessment, and full specimen citations are provided.
DS202107-1100
2019
Graf, C., Woodland, A., Hofer, H., Seitz, H-M., Pearson, G., Kjarsgaard, B.Metasomatism and oxidation state of lithospheric mantle beneath the Rae Craton, Canada as revealed by xenoliths from Somerset Island and Pelly Bay. ** Note dateGeophysical Research Abstracts , 1p. PdfCanada, Somerset Island , Nunavutcratons

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202104-0580
2019
Grass, C., Woodland, A., Hoferm H,m Seitz, H-M., Pearson, G., Kjarsgaard, B.Metasomatism and oxidation state of the lithospheric mantle beneath the Rae Craton, Canada as revealed by xenoliths from Somerset Island and Pelly Bay. ***note dateGeophysical Research abstracts, EGU, EGU2019-9348, 1p. PdfCanadageodynamics

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202108-1285
2021
Greenman, J.W., Rooney, A.D., Patzke, M., Ielpi, A., Halverson, G.P.Re-Os geochronology highlights widespread latest Mesoproterozoic ( ca 1090-1050 Ma) cratonic basin development on northern Laurentia.Geology, Vol. 49, March pp. 779-783.Canada, Greenlandgeochronology

Abstract: The terminal Mesoproterozoic was a period of widespread tectonic convergence globally, culminating in the amalgamation of the Rodinia supercontinent. However, in Laurentia, long-lived orogenesis on its eastern margin was punctuated by short-lived extension that generated the Midcontinent Rift ca. 1110-1090 Ma. Whereas this cratonic rift basin is typically considered an isolated occurrence, a series of new depositional ages demonstrate that multiple cratonic basins in northern Laurentia originated around this time. We present a Re-Os isochron date of 1087.1 ± 5.9 Ma from organic-rich shales of the Agu Bay Formation of the Fury and Hecla Basin, which is one of four closely spaced cratonic basins spanning from northeastern Canada to northwestern Greenland known as the Bylot basins. This age is identical, within uncertainty, to ages from the Midcontinent Rift and the Amundsen Basin in northwestern Canada. These ages imply that the late Mesoproterozoic extensional episode in Laurentia was widespread and likely linked to a common origin. We propose that significant thermal anomalies and mantle upwelling related to supercontinent assembly centered around the Midcontinent Rift influenced the reactivation of crustal weaknesses in Arctic Laurentia beginning ca. 1090 Ma, triggering the formation of a series of cratonic basins.
DS202103-0382
2021
Gress, M.U., Koornneef, J.M., Thomassot, E., Chinn, I.L., van Zuilen, K., Davies, G.R.Sm-Nd isochron age coupled with C-N isotope data of eclogitic diamonds from Jwaneng, Botswana.Geochimica et Cosmochimica Acta, Vol. 293, pp. 1-17. pdfAfrica, Botswanadeposit - Jwaneng

Abstract: Constraining the formation age of individual diamonds from incorporated mineral inclusions and assessing the host diamonds’ geochemical characteristics allows determination of the complex history of diamond growth in the sub-continental lithospheric mantle (SCLM). It also provides the rare opportunity to study the evolution of the deep cycling of volatiles over time. To achieve these aims, Sm-Nd isotope systematics are presented for 36 eclogitic garnet and clinopyroxene inclusions from 16 diamonds from the Jwaneng mine, Botswana. The inclusions and host diamonds comprise at least two compositional suites that record different ‘mechanisms’ of diamond formation and define two isochrons, one Paleoproterozoic (1.8?Ga) and one Neoproterozoic (0.85?Ga). There are indications of at least three additional diamond-forming events whose ages currently cannot be well constrained. The Paleoproterozoic diamond suite formed by large-scale (>100?s km), volatile-rich metasomatism related to formation and re-working of the Proto-Kalahari Craton. In contrast, the heterogeneous composition of the Neoproterozoic diamond suite indicates diamond formation on a small-scale, through local (<10?km) equilibration of compositionally variable diamond-forming fluids in different eclogitic substrates during the progressive breakup of the Rodinia supercontinent. The results demonstrate that regional events appear to reflect the input of volatiles (i.e., carbon-bearing) derived from the asthenospheric mantle, whereas local diamond-forming events mainly promote the redistribution of volatiles within the SCLM. The occurrence of isotopically light carbon analysed in distinct growth zones from samples of this study (?13C?
DS202103-0383
2021
Gress, M.U., Pearson, D.G., Chinn, I.L., Thomassot, E., Davies, G.R.Mesozoic to Paleoproterozoic diamond growth beneath Botswana recorded by Re-Os ages from individual eclogitic and websteritic inclusions.Lithos, 38p. PdfAfrica, Botswanadeposit - Orapa, Jwaneng

Abstract: Re-Os isotope systematics are reported from a suite of eclogitic and websteritic sulphide inclusions extracted from well-characterised diamond growth zones from the Orapa and Jwaneng kimberlite clusters. Re-Os ages (786 ± 250 Ma) are within uncertainty of previously determined Sm-Nd ages (853 ± 55 Ma), demonstrating isotopic equilibrium, at varying levels of completeness, across multiple isotopic systems in different minerals at the time of diamond formation and inclusion encapsulation. These data confirm the concept that inclusion isochron ages, when used with detailed textural/ growth zone control, reflect the timing of diamond crystallisation. Our data substantiate previous Re-Os and Sm-Nd inclusion ages of diamonds from Orapa and Jwaneng, indicating that major tectono-magmatic events formed discrete diamond populations of Paleo- (~ 2.0 to 1.7 Ga), Meso- (~ 1.2 to 1.1 Ga) and Neoproterozoic (~ 0.9 to 0.75 Ga) age. Some of these processes occurred simultaneously across the Kalahari Craton and can be traced over 100's of km illustrating the significance of diamond inclusions for monitoring continental tectonics. Inclusion ages indicating diamond formation that are younger than 300 Ma appear to be more common than previously recognised, consistent with evidence of relatively abundant, young, fluid-rich "fibrous" and polycrystalline diamonds at Jwaneng and Orapa. The increasingly widespread evidence for Mesozoic diamond-forming events in southern Africa and elsewhere appears closely linked with the kimberlite-related magmatism that affected these regions and subsequently transported diamonds to the surface. The inclusion isochron ages emphasise that diamond formation is a multi-stage and episodic process that can occur contemporaneously in disparate substrates and produce multiple diamond populations in the sub-continental lithospheric mantle.
DS202104-0581
2021
Gress, M.U., Pearson, D.G., Chinn, I.L., Thomassot, E., Davies, G.R.Mesozoic to Paleozoic diamond growth beneath Botswana recorded by Re-Os ages from individual eclogitic and websteritic inclusions.Appendix to previous Lithos article in March 2021, 11p. PdfAfrica, Botswanadeposit - Damtshaa, Orapa

Abstract: Re-Os isotope systematics are reported from a suite of eclogitic and websteritic sulphide inclusions extracted from well-characterised diamond growth zones from the Orapa and Jwaneng kimberlite clusters. Re-Os ages (786 ± 250 Ma) are within uncertainty of previously determined Sm-Nd ages (853 ± 55 Ma), demonstrating isotopic equilibrium, at varying levels of completeness, across multiple isotopic systems in different minerals at the time of diamond formation and inclusion encapsulation. These data confirm the concept that inclusion isochron ages, when used with detailed textural/ growth zone control, reflect the timing of diamond crystallisation. Our data substantiate previous Re-Os and Sm-Nd inclusion ages of diamonds from Orapa and Jwaneng, indicating that major tectono-magmatic events formed discrete diamond populations of Paleo- (~ 2.0 to 1.7 Ga), Meso- (~ 1.2 to 1.1 Ga) and Neoproterozoic (~ 0.9 to 0.75 Ga) age. Some of these processes occurred simultaneously across the Kalahari Craton and can be traced over 100's of km illustrating the significance of diamond inclusions for monitoring continental tectonics. Inclusion ages indicating diamond formation that are younger than 300 Ma appear to be more common than previously recognised, consistent with evidence of relatively abundant, young, fluid-rich “fibrous” and polycrystalline diamonds at Jwaneng and Orapa. The increasingly widespread evidence for Mesozoic diamond-forming events in southern Africa and elsewhere appears closely linked with the kimberlite-related magmatism that affected these regions and subsequently transported diamonds to the surface. The inclusion isochron ages emphasise that diamond formation is a multi-stage and episodic process that can occur contemporaneously in disparate substrates and produce multiple diamond populations in the sub-continental lithospheric mantle.
DS202101-0012
2020
Gribkoff, E.Geologists shed light on the mantle with 3D model.EOS, 101, doi.org/10.1029/2020EOE152364 Dec. 4, 2p.Mantlegeophysics - seismics

Abstract: The model, which will incorporate 227 million surface wave measurements, could help with everything from earthquake characterization to neutrino geosciences.
DS202108-1286
2021
Griffin, W.L., Gain, S.E.M., Saunders, M., Alard, O., Shaw, J., Toledo, V.Nitrogen under super-reducing conditions: Ti Oxynitride melts in xenolithic corundum aggregates from Mt. Carmel.Minerals, Vol. 11, 780, 16p. PdfEurope, Israeldeposit - Mt. Carmel

Abstract: Titanium oxynitrides (Ti(N,O,C)) are abundant in xenolithic corundum aggregates in pyroclastic ejecta of Cretaceous volcanoes on Mount Carmel, northern Israel. Petrographic observations indicate that most of these nitrides existed as melts, immiscible with coexisting silicate and Fe-Ti-C silicide melts; some nitrides may also have crystallized directly from the silicide melts. The TiN phase shows a wide range of solid solution, taking up 0-10 wt% carbon and 1.7-17 wt% oxygen; these have crystallized in the halite (fcc) structure common to synthetic and natural TiN. Nitrides coexisting with silicide melts have higher C/O than those coexisting with silicate melts. Analyses with no carbon fall along the TiN-TiO join in the Ti-N-O phase space, implying that their Ti is a mixture of Ti3+ and Ti2+, while those with 1-3 at.% C appear to be solid solutions between TiN and Ti0.75O. Analyses with >10 at% C have higher Ti2+/Ti3+, reflecting a decrease in fO2. Oxygen fugacity was 6 to 8 log units below the iron-wüstite buffer, at or below the Ti2O3-TiO buffer. These relationships and coexisting silicide phases indicate temperatures of 1400-1100 °C. Ti oxynitrides are probably locally abundant in the upper mantle, especially in the presence of CH4-H2 fluids derived from the deeper metal-saturated mantle.
DS202101-0013
2020
Griffin, W.L., Gain, S.E.M., Saunders, M., Bindi, L., Alard, O., Toledo, V., O'Reilly, S.Y.Parageneses of TIB2 in corundum xenoliths from Mt. Carmel, Israel: siderophile behaviour of boron under reducing conditions.American Mineralogist , in press available 33p. PdfEurope, Israeldeposit - Mt. Carmel

Abstract: Titanium diboride (TiB2) is a minor but common phase in melt pockets trapped in the corundum aggregates that occur as xenoliths in Cretaceous basaltic volcanoes on Mt. Carmel, north Israel. These melt pockets show extensive textural evidence of immiscibility between metallic (Fe-Ti-C-Si) melts, Ca-Al-Mg-Si-O melts, and Ti-(oxy)nitride melts. The metallic melts commonly form spherules in the coexisting oxide glass. Most of the observed TiB2 crystallized from the Fe-Ti-C silicide melts and a smaller proportion from the oxide melts. The parageneses in the melt pockets of the xenoliths require fO2 ? ?IW-6, probably generated through interaction between evolved silicate melts and mantle-derived CH4+H2 fluids near the crust-mantle boundary. Under these highly reducing conditions boron, like carbon and nitrogen, behaved mainly as a siderophile element during the separation of immiscible metallic and oxide melts. These parageneses have implications for the residence of boron in the peridotitic mantle and for the occurrence of TiB2 in other less well-constrained environments such as ophiolitic chromitites.
DS202110-1616
2021
Griffin, W.L., Gain, S.E.M., Saunders, M., Camara, F., Bindi, L., Sparta, D., Toledo, V., O'Reilly, S.Y.Cr203 in corundum: ultrahigh contents under reducing conditions. American Mineralogist, Vol. 106, pp. 1420-1437. pdfEurope, Israeldeposit - Mount Carmel

Abstract: Xenocrysts and xenoliths in Upper Cretaceous pyroclastics on Mount Carmel (northern Israel) represent a series of similar magma-fluid systems at different stages of their evolution, recording a continuous decrease in oxygen fugacity (fO2) as crystallization proceeded. Corundum coexisting with Fe-Mg-Cr-Al spinels, other Fe-Mg-Al-Na oxides, and Fe-Ni alloys in apparent cumulates crystallized at fO2 values near the iron-wüstite (IW) buffer (fO2 = IW±1) and is zoned from high-Cr cores to lower-Cr rims, consistent with fractional crystallization trends. The reconstructed parental melts of the cumulates are Al-Cr-Fe-Mg oxides with ca. 2 wt% SiO2. Corundum in other possible cumulates that contain Cr-Fe (Fe 45 wt%) alloys has low-Cr cores and still lower-Cr rims. Corundum coexisting with Cr0 (fO2 = IW-5) in some possible cumulates has low-Cr cores, but high-Cr rims (to >30% Cr2O3). These changes in zoning patterns reflect the strong decrease in the melting point of Cr2O3, relative to Al2O3, with decreasing fO2. The electron energy loss spectroscopy (EELS) analyses show that all Cr in corundum that coexists with Cr0 is present as Cr3+. This suggests that late in the evolution of these reduced melts, Cr2+ has disproportionated via the reaction 3Cr2+(melt) ? 2Cr3+(Crn) + Cr0. The most Cr-rich corundum crystallized together with ?-alumina phases including NaAl11O17 (diaoyudaoite) and KAl11O17 (kahlenbergite) and ??-alumina phases; residual melts crystallized a range of (K,Mg)2(Al,Cr)10O17 phases with the kahlenbergite structure. The parental melts of these assemblages appear to have been Al-Cr-K-Na-Mg oxides, which may be related to the Al-Cr-Fe-Mg oxide melts mentioned above, through fractional crystallization or liquid immiscibility. These samples are less reduced (fO2 from IW to IW-5) than the assemblages of the trapped silicate melts in the more abundant xenoliths of corundum aggregates (fO2 = IW-6 to IW-10). They could be considered to represent an earlier stage in the fO2 evolution of an “ideal” Mt. Carmel magmatic system, in which mafic or syenitic magmas were fluxed by mantle-derived CH4+H2 fluids. This is a newly recognized step in the evolution of the Mt. Carmel assemblages and helps to understand element partitioning under highly reducing conditions.
DS202111-1770
2021
Grishina, S., Goryainov, S., Oreshonkov, A., Karmanov, N.Micro-Raman study of cesanite ( Ca2Na3(OH)(SO4)3) in chloride segregations from Udachnaya-East kimberlites.Journal of Raman Spectroscopy, 11p. PdfRussiadeposit - Udachnay-East

Abstract: Cesanite (Ca2Na3(OH)(SO4)3), a rare mineral, has been found in a few places restricted to a geothermal field and caves. We report the new occurrence of cesanite in quite different geological site—within sulfate-rich melt inclusions in chloride segregations from kimberlites of Udachnaya-East pipe (Siberia). Two halite generations: ?esanite free and ?esanite-bearing, were distinguished in concentrically zonal segregations according to the results of the mineral and sulfate melt inclusion study by micro-Raman spectroscopy and SEM-EDS. We have applied the Raman spectroscopy and first principles calculations to understand structural and vibrational properties of cesanite daughter mineral in polyphase sulfate inclusions. Polarized spectra provided additional information on the overlapped components of the spectral profile. The Raman spectra of cesanite in the range of OH stretching vibrations are reported for the first time. The study aims to clarify the source of the Na-S-Cl-enrichment in the Udachnaya-East pipe, which is highly discussed.
DS202101-0014
2020
Gruber, B., Chacko, T., Pearson, D.G., Currie, C., Menzies, A.Heat production and moho temperatures in cratonic crust: evidence from lower crustal xenoliths from the Slave craton.Lithos, doi.org/10.1016/ j.lithos.2020.105889 13p. PdfCanada, Northwest Territoriesdeposit - Diavik A-154

Abstract: Ambient Moho temperatures and lower crustal heat production are surprisingly poorly constrained in cratons. Here we address these problems using 15 lower crustal xenoliths from the Diavik A-154 kimberlite, Slave craton, Canada. Iron?magnesium exchange geothermometry on small biotite and amphibole inclusions in garnet indicates that the Slave craton lower crust was at a temperature of ?500 °C at the time of kimberlite eruption (~55 Ma). The ambient lower crustal temperature was likely lower than 500 °C because the thermometers record the closure temperature of diffusional Fe2+-Mg exchange between touching mineral pairs. New measurements of K, U and Th concentrations in the constituent minerals, together with xenolith modes, allow reconstruction of the heat-producing element (HPE) K, U, and Th budget of the Slave craton lower crust. Metasedimentary granulites have an average heat production of 0.29 ± 0.01 ?W/m3 (n = 3) whereas mafic granulites have an average heat production of 0.13 ± 0.03 ?W/m3 (n = 12). Our new data clearly show that plagioclase abundance in both lithologies has a major influence on overall lower crustal heat production, being an important reservoir of all three HPE. Combining the heat production of mafic and metasedimentary granulites in their observed 80:20 proportions results in an average heat production value for the Slave craton lower crust of 0.16 ± 0.03 ?W/m3. Using these heat production estimates, modeled Moho temperatures beneath Diavik of ~450-470 °C are broadly consistent with maximum lower crustal temperatures indicated by geothermometry. The low HPE contents predicted for cratonic lower crust must result in lower temperatures in the deep crust and mantle lithosphere, and in turn higher estimates for the thickness of mantle lithosphere. This effect becomes larger as the thickness of the low-HPE lower crustal layer increases. In the specific case of the central Slave craton, we find that model estimates of the diamond potential of the mantle lithosphere, as judged by the proportion of lithospheric mantle in the diamond stability field, are not strongly affected by small variations in lower crustal heat production and Moho temperature.
DS202112-1928
2021
Grutter, H.Observations on "Lows" and "Highs" in contemporary  microdiamond data.VCK Talk Nov. 2, https://youtu.be/Be3BNqDZTw0Globalmicrodiamond

Abstract: The evaluation of advanced stage diamond projects is materially constrained by the time and cost involved in bulk sampling (or trial mining) campaigns that serve to demonstrate the grade and value of (macro)diamonds in a deposit. However, comparatively inexpensive assay data for (micro)diamonds may also be used to estimate (macro)diamond grade, by way of geostatistical extrapolation or modelling of total diamond content curves and diamond size frequency distributions. Geoscientists at SRK (Canada) Inc. compiled publicly available technical disclosure related to micro/macrodiamond sampling campaigns completed since early-2004 and developed a model-independent benchmarking approach to estimate in-situ (macro)diamond grades based on microdiamond assay results - a one-page summary of that work is available here: here Our ongoing investigation of microdiamond data has developed a focus on the occurrence of "low-count" and "high-count" microdiamond assay results. In this VKC talk we contrast "normal"-count with "low"-count results (Snap Lake vs FALC and others) and appeal to diamond-bearing mantle xenoliths to explain occasional "high"-count results. Real-world examples are used to cover topics like microdiamond sample sizes and (attained) resolution thresholds in the range 1 part in 1010 to 1012. The talk closes out with an examination of the microdiamond dataset for the Tuwawi pipe (northern Baffin Island).
DS202106-0939
2021
Guan, H., Geoffroy, L., Xu, M.Magma-assisted fragmentation of Pangea: continental breakup initiation and propagation.Gondwana Research, Vol. 96, pp. 56-75. pdfMantlemagmatism

Abstract: Pre-magmatic continental extension often precedes the major magmatic expulsion of large igneous provinces (LIPs). However, the cause-and-effect relationship between pre-magmatic rifting and the extrusion of large amount of magma is controversial. It remains unclear whether magmatism arises as a consequence of passive rifting or whether it is related to active upwelling of the mantle. In addition, the relationship between the pre-magmatic stages and the final breakup, with the onset of conjugate passive margins, is ambiguous. In this study, we compiled available data from six LIPs (Central Atlantic, Karoo, Parana-Etendeka, Deccan, North Atlantic, and Afar igneous provinces) that successively occurred during the fragmentation of Pangea and found that pre-magmatic rift trends may show a high obliquity or even be orthogonal with respect to the future passive margins. We conclude that syn-magmatic rifts should not be directly correlated, both structurally and dynamically, to the ancient pre-magmatic rift phase. Furthermore, following the breakup of a supercontinent, seafloor spreading usually initiates within volcanic passive margins (VPMs) and then propagates away to create non-volcanic passive margins (NVPMs) as a consequence of the consumption and cooling of a sub-lithospheric positive thermal anomaly. Major transform faults often exist between VPMs and NVPMs, acting as a mechanical barrier to mantle melting and magmatism transportation.
DS202107-1101
2018
Guha, A., Rani, K., Varma, C.B., Sarwate, N.K., Sharma, N., Mukherjee, A., Kumar, K.V., Pal, S.K., Saw, A.K., Jha, S.K.Identification of potential zones for kimberlite exploration - an Earth observation approach. ChhatarpurThe International Achives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-5 12p. PdfIndia, Madhya PradeshASTER, lineament

Abstract: In the present study, we have prepared the thematic evidence layers for identifying the potential zones of kimberlite emplacement in parts of Chhatarpur district, Madhya Pradesh. These thematic layers or evidence layers are geological structure, alteration zones, lineament density, surface alteration and geomorphic anomaly and these layers are prepared from the remote sensing data. As orientation of the geological structures (i.e fault system) and their density have the major role in the emplacement of kimberlite; both of these evidence layers are integrated using "AND" Boolean Logical Operator. On the other hand, two evidential layers regarded as the proxy to indicate the "surface expressions on kimberlite (i.e. alteration zones and geomorphic anomaly) are combined using "OR" operator as either of these two surface expression is indicative of kimberlite. Consequently, conjugate evidence layers on the surface expressions of kimberlite are integrated with the causative evidence layers of kimberlite emplacement using "AND" operator to identify the potential zones of diamond occurrences. Potential zones of kimberlite are overlaid on the residual gravity anomaly map derived from space-based gravity model of European Improved Gravity of Earth by New Technique (EIGEN6C4) to relate potential zones of kimberlite with the similar structural alignment (delineated in the residual gravity map) of known occurrence of kimberlite. We also have carried out indicator mineral survey around these potential zones and some of the kimberlite specific indicator minerals are identified in the stream sediments within these potential zones.
DS202103-0384
2021
Gunduz, M., Asan, K.PetroGram: an excel-based petrology program for modeling of magmatic processes.Geoscience Frontiers, Vol. 12, pp. 81-92. pdfGlobalpetrology

Abstract: PetroGram is an Excel© based magmatic petrology program that generates numerical and graphical models. PetroGram can model the magmatic processes such as melting, crystallization, assimilation and magma mixing based on the trace element and isotopic data. The program can produce both inverse and forward geochemical models for melting processes (e.g. forward model for batch, fractional and dynamic melting, and inverse model for batch and dynamic melting). However, the program uses a forward modeling approach for magma differentiation processes such as crystallization (EC: Equilibruim Crystallization, FC: Fractional Crystallization, IFC: Imperfect Fractional Crystallization and In-situ Crystallization), assimilation (AFC: Assimilation Fractional Crystallization, Decoupled FC-A: Decoupled Fractional Crystallization and Assimillation, A-IFC: Assimilation and Imperfect Fractional Crystallization) and magma mixing. One of the most important advantages of the program is that the melt composition obtained from any partial melting model can be used as a starting composition of the crystallization, assimilation and magma mixing. In addition, PetroGram is able to carry out the classification, tectonic setting, multi-element (spider) and isotope correlation diagrams, and basic calculations including Mg#, Eu/Eu?, ?Sr and ?Nd widely used in magmatic petrology.
DS202103-0385
2020
Guo, H., Yu, X., Zheng, Y., Sun, Z., Ng, M.F-Y.Inclusion and trace element characteristics of emeralds from Swat Valley, Pakistan.Gems & Gemology, Vol. 56, 3, pp. 336-355. pdfAsia, Pakistandeposit - Swat Valley. Emerald

Abstract: Swat Valley has become an important source of emeralds, including recently discovered trapiche-type crystals. In this study, emerald samples from Swat were examined by standard gemological testing, UV-Vis-NIR, FTIR, Raman analysis, EDXRF, and LA-ICP-MS. The study found three-phase hexagonal inclusions consisting of water, gaseous carbon dioxide and nitrogen, and a magnesite crystal. The gaseous mixture in two-phase inclusions is characteristic in both trapiche-type (CO2 + N2) and non-trapiche samples (CO2 + N2 + CH4). Mineral inclusions of hematite, magnetite, rutile, graphite, and siderite are reported for the first time. Regular non-trapiche-type Swat emeralds contain high chromium (avg. 7471 ppmw), alkali metal (avg. 21040 ppmw), magnesium (avg. 34263 ppmw), and iron (avg. 9265 ppmw), as well as scandium (avg. 633 ppmw). Infrared spectra show that the absorption of type II H2O is stronger than that of type I H2O. Logarithm plots of trace elements appear to be diagnostic. Based on Raman spectroscopy, the trapiche-type emeralds’ colorless core, light green hexagonal growth zone area, and green rim are emerald, while the six black arms are a mixture of hematite and graphite.
DS202102-0196
2020
Hainschwang, T.Wrestling with radiation ( diamonds)Gems & Jewellery, Vol. 29, 4, pp. 28-41.Globaldiamond colour
DS202106-0940
2021
Halim, A.Y., Kelloway, S.J., Marjo, C., Regenauer-Lieb. K.A Hylogger-Itrax core-scanner comparison for multi-scale high resolution petrophysical characterization workflow. * not specific to diamondsApplied Chemistry, in press available, 18p. PdfGlobalHylogger

Abstract: Recent advances in core scanning technologies allow for fast and non-destructive chemical and mineral profiling of rock samples for mineral services and oil and gas exploration. The aim of these automatic core scan methods is to obtain valuable information for profiling drill core cuttings with minimum sample preparation at relatively high speed. In the last decade, a core logging system using an automated infrared-based hyperspectral line-profiling system, Hylogger, has progressed to become an effective standard for the Australian mineral exploration industry. Its results are used to rapidly obtain mineralogical information allowing the characterisation of different geological formations in near real-time. The interpretation of Hylogger data can be challenging for certain complex mineral mixtures. Here we solve this issue by augmenting the Hylogger interpretation with elemental analysis using the Itrax core scanner equipped with an X-ray fluorescence (XRF) spectrometer. The Itrax core scanner produces high-resolution elemental data of major, minor and trace elements in one dimension. We analyse and compare the Hylogger and Itrax data, with each dataset independently cross-checked using X-ray diffraction (XRD) and thin-section petrology and propose a workflow harvesting the mutual strengths of each method. The recommended workflow consists of rapid screening using Hylogger and XRF analysis, providing new insights into the mineralogy based on comparative multiscale element-mineral analysis. The workflow is tested on four different types of volcanic rock samples, where infrared spectra of individual minerals overlap. We tested tuffaceous ash, basaltic, dolerite, and basaltic-andesitic rocks. Our study shows that embedding Itrax core scanner data into the workflow provides a solution to the challenges of interpreting Hylogger data in complex mineral samples. The proposed workflow provides a total system for multiscale, high-resolution petrophysical analyses and rock property modelling.
DS202103-0386
2021
Hall, A.M., Putkinen, N., Hietala,, S., Lindsberg, E., Holma, M.Ultra-slow cratonic denudation in Finland since 1.5 Ga indicated by tiered unconformities and impact structures.Precambrian Research, Vol. 352, 106000, 18p. PdfEurope, Finlandgeothermometry

Abstract: The Earth’s cratons are traditionally regarded as tectonically stable cores that were episodically buried by thin sedimentary covers. Cratonic crust in southern Finland holds seven post-1.7 Ga tiered unconformities, with remnants of former sedimentary covers. We use the geometries of the tiered unconformities, along with previously dated impact structures and kimberlite and carbonatite pipes, to reconstruct the erosion and burial history of the craton and to derive estimates of depths of erosion in basement and former sedimentary rocks. The close vertical spacing (<200 m) of the unconformities and the survival of small (D ? 5 km) Neoproterozoic and Early Palaeozoic impact structures indicate minor later erosion. Average erosion rates (<2.5 m/Ma) in basement and cover are amongst the lowest reported on Earth. Ultra-slow erosion has allowed the persistence in basement fractures of Phanerozoic fracture coatings and Palaeogene groundwater and microbiomes. Maximum thicknesses of foreland basin sediments in Finland during the Sveconorwegian and Caledonide orogenies are estimated as ~1.0 km and <0.68-1.0 km, respectively. Estimated losses of sedimentary cover derived from apatite fission track thermochronology are higher by factors of at least 2 to 4. A dynamic epeirogenic history of the craton in Finland, with kilometre-scale burial and exhumation, proposed in recent thermochronological models is not supported by other geological proxies. Ultra-slow erosion rates in southern Finland reflect long term tectonic stability and burial of the craton surface for a total of ~1.0 Ga beneath generally thin sedimentary cover.
DS202112-1929
2021
Hardman, M.F., Stachel, T., Pearson, D.G., Cano, E.J., Stern, R.A., Sharp, Z.D.Characterising the distinct crustal protoliths of Roberts Victor Type I and II eclogites.Journal of Petrology, doi.org/petrology/egab090 65p. PdfAfrica, South Africadeposit - Roberts Victor

Abstract: The origin of the eclogites that reside in cratonic mantle roots has long been debated. In the classic Roberts Victor kimberlite locality in South Africa, the strongly contrasting textural and geochemical features of two types of eclogites have led to different genetic models. We studied a new suite of 63 eclogite xenoliths from the former Roberts Victor Mine. In addition to major- and trace-element compositions for all new samples, we determined 18O/16O for garnet from 34 eclogites. Based on geochemical and textural characteristics we identify a large suite of Type I eclogites (n = 53) consistent with previous interpretations that these rocks originate from metamorphosed basaltic-picritic lavas or gabbroic cumulates from oceanic crust, crystallised from melts of depleted MORB mantle. We identify a smaller set of Type II eclogites (n = 10) based on geochemical and textural similarity to eclogites in published literature. We infer their range to very low ?18O values combined with their varied, often very low Zr/Hf ratios and LREE-depleted nature to indicate a protolith origin via low-pressure clinopyroxene-bearing oceanic cumulates formed from melts that were more depleted in incompatible elements than N-MORB. These compositions are indicative of derivation from a residual mantle source that experienced preferential extraction of incompatible elements and fractionation of Zr-Hf during previous melting.
DS202110-1617
2021
Hardy, J.Sapphire: a celebration of colour. ( sponsored by Gemfields)jeweleryconnisseur.net, Thames & Hudson series Book no info.Globalsapphires
DS202106-0941
2021
Harlow, G.The American Museum of Natural History Gem exhibit.Gems&Jewellery, Vol. 30, 1, pp. 18-20.United States, New YorkGem exhibit
DS202106-0942
2021
Harmon, R.S., Senesi, G.S.Laser-induced breakdown spectroscopy - a geochemical tool for the 21st century. * not specific to diamondsApplied Chemistry, Vol. 128, 104929 55p. PdfGlobalgeochemistry

Abstract: Laser-induced breakdown spectroscopy (LIBS) is a simple, straightforward, and versatile form of atomic emission spectroscopy that focuses a rapidly-pulsed laser beam onto a sample to form a plasma containing its constituent elements and then uses spectral analysis of the emitted light to detect the elements present. In theory, LIBS is capable of qualitative, semi-quantitative, and quantitative analysis of all elements in the periodic table. LIBS can be performed in the laboratory or outside in the ambient environment for on-site analysis in situ; LIBS can also be used for rapid microscale compositional imaging. This review first presents a description of the LIBS technique and then discusses and illustrates through a historic literature review how LIBS has been used to analyze gases, natural waters, minerals, rocks, sediments, and soils. Given the persistent need of analytical instrumentation for the rapid chemical analysis of geologic materials in the field, and the capability of LIBS to analyze any type of sample in real time with little to no preparation, there is a vast potential for the routine application of LIBS across a broad spectrum of the geosciences that is as yet only minimally realized.
DS202108-1287
2021
Harte, B., Helmstaedt, H., Kopylova, M., Moore, A.E.John Gurney - a career of discovery and promotion of scientific knowledge.Lithos, Vol. 398-399, 1p. Africa, South Africa, GlobalTribute, obituary
DS202110-1618
2021
Haugaard, R., Waterton, P., ootes, L., Pearson, D.G., Luo,Y., Konhauser, K.Detrital chromites reveal Slave craton's missing komatite.Geology, Vol. 49, 9, pp. 1079-1083. pdfCanada, Northwest Territorieschromites

Abstract: Komatiitic magmatism is a characteristic feature of Archean cratons, diagnostic of the addition of juvenile crust, and a clue to the thermal evolution of early Earth lithosphere. The Slave craton in northwest Canada contains >20 greenstone belts but no identified komatiite. The reason for this dearth of komatiite, when compared to other Archean cratons, remains enigmatic. The Central Slave Cover Group (ca. 2.85 Ga) includes fuchsitic quartzite with relict detrital chromite grains in heavy-mineral laminations. Major and platinum group element systematics indicate that the chromites were derived from Al-undepleted komatiitic dunites. The chromites have low 187Os/188Os ratios relative to chondrite with a narrow range of rhenium depletion ages at 3.19 ± 0.12 Ga. While these ages overlap a documented crust formation event, they identify an unrecognized addition of juvenile crust that is not preserved in the bedrock exposures or the zircon isotopic data. The documentation of komatiitic magmatism via detrital chromites indicates a region of thin lithospheric mantle at ca. 3.2 Ga, either within or at the edge of the protocratonic nucleus. This study demonstrates the applicability of detrital chromites in provenance studies, augmenting the record supplied by detrital zircons.
DS202109-1470
2021
Helmstaedt, H., Pehrsson, S.J., Stubley, M.P.The Slave Province, Canada - geological evolution of an archean diamondiferous craton.Geological Association of Canada Bookstore, https://gac.ca/publications/bookstore Special Paper 51, 216p. Prices 42.50 member, $75.00 non-member isbn:978-1-897095-89-8Canada, Northwest TerritoriesCraton

Abstract: With its well-exposed geologic record from the Hadean Acasta gneiss complex through to Phanerozoic kimberlites, the Slave craton of northwestern Canada has long been a focus for research into early Earth evolution of both the crust and lithosphere. As a result, it has become one of the most extensively studied Archean cratons in the world. This multidisciplinary volume provides an authoritative overview of the Slave craton literally from the bottom up, integrating the nature of its lithosphere based on kimberlitic mantle samples with its upper crustal geology to provide a new model for its Archean assembly and cratonization. All aspects of Slave craton geology are covered, from the stratigraphy of its famous gold camps to the history of exploration and nature of its world-class diamondiferous kimberlite fields. Detailed and well-illustrated chapters cover its terranes and greenstone belts, magmatism, geophysical character, tectono-metamorphic evolution, and Paleoproterozoic marginal sequences. The book’s wealth of data and up-to-date bibliography provide a unique resource for understanding, researching and teaching Archean geology and subcrustal and cratonic evolution. It elegantly integrates diverse fields to provide one of the most comprehensive models for the craton and the protracted, multiphase formation of its diamond-bearing lithospheric root. (JK Note: the link above takes you to the GAC web site where Special Paper 51 can be purchased. Because the GAC only provides the abstract and a photo of the front page, I am providing a Table of Contents pdf.)
DS202108-1288
2021
Hermann, J., Lakey, S.Water transfer to the deep mantle through hydrous, Al-rich silicates in subduction zones.Geology, Vol. 49, pp. 911-915.Mantlewater

Abstract: Constraining deep-water recycling along subduction zones is a first-order problem to understand how Earth has maintained a hydrosphere over billions of years that created conditions for a habitable planet. The pressure-temperature stability of hydrous phases in conjunction with slab geotherms determines how much H2O leaves the slab or is transported to the deep mantle. Chlorite-rich, metasomatic rocks that form at the slab-mantle interface at 50-100 km depth represent an unaccounted, H2O-rich reservoir in subduction processes. Through a series of high-pressure experiments, we investigated the fate of such chlorite-rich rocks at the most critical conditions for subduction water recycling (5-6.2 GPa, 620-800 °C) using two different natural ultramafic compositions. Up to 5.7 GPa, 740 °C, chlorite breaks down to an anhydrous peridotite assemblage, and H2O is released. However, at higher pressures and lower temperatures, a hydrous Al-rich silicate (11.5 Å phase) is an important carrier to enable water transfer to the deep mantle for cold subduction zones. Based on the new phase diagrams, it is suggested that the deep-water cycle might not be in secular equilibrium.
DS202102-0197
2021
Hill, E.J., Pearce, M.A., Stromberg, J.M.Improving automated geological logging of drill holes by incorporating multiscale spatial methods. ( not specific to diamonds)Mathematical Geosciences, Vol. 53, pp. 21-53. pdfGlobaldrill hole data

Abstract: Manually interpreting multivariate drill hole data is very time-consuming, and different geologists will produce different results due to the subjective nature of geological interpretation. Automated or semi-automated interpretation of numerical drill hole data is required to reduce time and subjectivity of this process. However, results from machine learning algorithms applied to drill holes, without reference to spatial information, typically result in numerous small-scale units. These small-scale units result not only from the presence of very small rock units, which may be below the scale of interest, but also from misclassification. A novel method is proposed that uses the continuous wavelet transform to identify geological boundaries and uses wavelet coefficients to indicate boundary strength. The wavelet coefficient is a useful measure of boundary strength because it reflects both wavelength and amplitude of features in the signal. This means that boundary strength is an indicator of the apparent thickness of geological units and the amount of change occurring at each geological boundary. For multivariate data, boundaries from multiple variables are combined and multiscale domains are calculated using the combined boundary strengths. The method is demonstrated using multi-element geochemical data from mineral exploration drill holes. The method is fast, reduces misclassification, provides a choice of scales of interpretation and results in hierarchical classification for large scales where domains may contain more than one rock type.
DS202105-0766
2021
Hills, S.Fluorescence microscopy: the revolution revolving.Carnegiescience.edu, June 8, 2pm. ESTGlobalfluorescence
DS202102-0198
2021
Hoare, B.C., Tomlinson, E.L., Barnes, J.D., Tappe, S., Marks, M.A.W., Epp, T., Caulfield, J., Riegler, T.Tracking halogen recycling and volatile loss in kimberlite magmatism from Greenland: evidence from combined F-Cl-Br and Delta 37Cl systematics.Lithos, doi;101016/j. lithos.2021.105976 78p. PdfEurope, Greenlandhalogen
DS202109-1471
2019
Hoekstra, Q.Conflict diamonds and the Angolan Civil War (1992-2002).Third World Quarterly, Vol. 40, 7, pp. 1322-1339.Africa, Angolalegal

Abstract: In the early 1990s several rebel groups turned to natural resource extraction to pay for war. A key form of this is rebel diamond production, commonly referred to as conflict diamonds, which is widely perceived as being highly beneficial to insurgent organisations. Yet in the Angolan Civil War (1992-2002), the use of conflict diamonds by the National Union for the Total Independence of Angola (UNITA) resulted in a decisive insurgent defeat. How can this outcome be explained? Offering a nuanced understanding of how conflict diamonds affect civil war, this article shows that although diamonds generated considerable revenue for UNITA, they were not an effective method for them to take on the Angolan government. This was for two reasons: internally, the rebels greatly struggled to convert their diamond proceeds into sufficient goods and services; and externally, it left the group highly vulnerable to international countermeasures in the form of United Nations Security Council sanctions. Natural resource extraction may therefore not be as useful to rebel groups as is frequently believed.
DS202109-1472
2021
Hoffman, P.F., Halverson, G.P., Schrag, D.P., Higgins, J.A., Domack, E.W., Macdonald, F.A., Pruss, S.B., Blattler, C.L., Crockford, P.W., Hodgin, E.B., Bellefroid, E.J., Johnson, B.W., Hodgskiss, M.S.W., Lamothe, K.G., LoBianco, S.J.C., Busch, J.F., HowesSnowballs in Africa: sectioning a long-lived Neoproterozoic carbonate platform and its bathyal foreslope ( NW Namibia). (Octavi Group)Earth Science Reviews , Vol. 219, 103616 231p. PdfAfrica, NamibiaCraton - Congo

Abstract: Otavi Group is a 1.5-3.5-km-thick epicontinental marine carbonate succession of Neoproterozoic age, exposed in an 800-km-long Ediacaran?Cambrian fold belt that rims the SW cape of Congo craton in northern Namibia. Along its southern margin, a contiguous distally tapered foreslope carbonate wedge of the same age is called Swakop Group. Swakop Group also occurs on the western cratonic margin, where a crustal-scale thrust cuts out the facies transition to the platformal Otavi Group. Subsidence accommodating Otavi Group resulted from S?N crustal stretching (770-655?Ma), followed by post-rift thermal subsidence (655-600?Ma). Rifting under southern Swakop Group continued until 650-635?Ma, culminating with breakup and a S-facing continental margin. No hint of a western margin is evident in Otavi Group, suggesting a transform margin to the west, kinematically consistent with S?N plate divergence. Rift-related peralkaline igneous activity in southern Swakop Group occurred around 760 and 746?Ma, with several rift-related igneous centres undated. By comparison, western Swakop Group is impoverished in rift-related igneous rocks. Despite low paleoelevation and paleolatitude, Otavi and Swakop groups are everywhere imprinted by early and late Cryogenian glaciations, enabling unequivocal stratigraphic division into five epochs (period divisions): (1) non-glacial late Tonian, 770-717?Ma; (2) glacial early Cryogenian/Sturtian, 717-661?Ma; (3) non-glacial middle Cryogenian, 661-646?±?5?Ma; (4) glacial late Cryogenian/Marinoan, 646?±?5-635?Ma; and (5) non-glacial early Ediacaran, 635-600?±?5?Ma. Odd numbered epochs lack evident glacioeustatic fluctuation; even numbered ones were the Sturtian and Marinoan snowball Earths. This study aimed to deconstruct the carbonate succession for insights on the nature of Cryogenian glaciations. It focuses on the well-exposed southwestern apex of the arcuate fold belt, incorporating 585?measured sections (totaling >190?km of strata) and?>?8764 pairs of ?13C/?18Ocarb analyses (tabulated in Supplementary On-line Information). Each glaciation began and ended abruptly, and each was followed by anomalously thick ‘catch-up’ depositional sequences that filled accommodation space created by synglacial tectonic subsidence accompanied by very low average rates of sediment accumulation. Net subsidence was 38% larger on average for the younger glaciation, despite its 3.5-9.3-times shorter duration. Average accumulation rates were subequal, 4.0 vs 3.3-8.8?m Myr?1, despite syn-rift tectonics and topography during Sturtian glaciation, versus passive-margin subsidence during Marinoan. Sturtian deposits everywhere overlie an erosional disconformity or unconformity, with depocenters ?1.6?km thick localized in subglacial rift basins, glacially carved bedrock troughs and moraine-like buildups. Sturtian deposits are dominated by massive diamictite, and the associated fine-grained laminated sediments appear to be local subglacial meltwater deposits, including a deep subglacial rift basin. No marine ice-grounding line is required in the 110 Sturtian measured sections in our survey. In contrast, the newly-opened southern foreslope was occupied by a Marinoan marine ice grounding zone, which became the dominant repository for glacial debris eroded from the upper foreslope and broad shallow troughs on the Otavi Group platform, which was glaciated but left nearly devoid of glacial deposits. On the distal foreslope, a distinct glacioeustatic falling-stand carbonate wedge is truncated upslope by a glacial disconformity that underlies the main lowstand grounding-zone wedge, which includes a proximal 0.60-km-high grounding-line moraine. Marinoan deposits are recessional overall, since all but the most distal overlie a glacial disconformity. The Marinoan glacial record is that of an early ice maximum and subsequent slow recession and aggradation, due to tectonic subsidence. Terminal deglaciation is recorded by a ferruginous drape of stratified diamictite, choked with ice-rafted debris, abruptly followed by a syndeglacial-postglacial cap-carbonate depositional sequence. Unlike its Sturtian counterpart, the post-Marinoan sequence has a well-developed basal transgressive (i.e., deepening-upward) cap dolomite (16.9?m regional average thickness, n?=?140) with idiosyncratic sedimentary features including sheet-crack marine cements, tubestone stromatolites and giant wave ripples. The overlying deeper-water calci-rhythmite includes crystal-fans of former aragonite benthic cement ?90?m thick, localized in areas of steep sea-floor topography. Marinoan sequence stratigraphy is laid out over ?0.6?km of paleobathymetric relief. Late Tonian shallow-neritic ?13Ccarb records were obtained from the 0.4-km-thick Devede Fm (~770-760?Ma) in Otavi Group and the 0.7-km-thick Ugab Subgroup (~737-717?Ma) in Swakop Group. Devede Fm is isotopically heavy, +4-8‰ VPDB, and could be correlative with Backlundtoppen Fm (NE Svalbard). Ugab Subgroup post-dates 746?Ma volcanics and shows two negative excursions bridged by heavy ?13C values. The negative excursions could be correlative with Russøya and Garvellach CIEs (carbon isotope excursions) in NE Laurentia. Middle Cryogenian neritic ?13C records from Otavi Group inner platform feature two heavy plateaus bracketed by three negative excursions, correlated with Twitya (NW Canada), Taishir (Mongolia) and Trezona (South Australia) CIEs. The same pattern is observed in carbonate turbidites in distal Swakop Group, with the sub-Marinoan falling-stand wedge hosting the Trezona CIE recovery. Proximal Swakop Group strata equivalent to Taishir CIE and its subsequent heavy plateau are shifted bidirectionally to uniform values of +3.0-3.5‰. Early Ediacaran neritic ?13C records from Otavi Group inner platform display a deep negative excursion associated with the post-Marinoan depositional sequence and heavy values (??+?11‰) with extreme point-to-point variability (?10‰) in the youngest Otavi Group formation. Distal Swakop Group mimics older parts of the early Ediacaran inner platform ?13C records, but after the post-Marinoan negative excursion, proximal Swakop Group values are shifted bidirectionally to +0.9?±?1.5‰. Destruction of positive and negative CIEs in proximal Swakop Group is tentatively attributed to early seawater-buffered diagenesis (dolomitization), driven by geothermal porewater convection that sucks seawater into the proximal foreslope of the platform. This hypothesis provocatively implies that CIEs originating in epi-platform waters and shed far downslope as turbidites are decoupled from open-ocean DIC (dissolved inorganic carbon), which is recorded by the altered proximal Swakop Group values closer to DIC of modern seawater. Carbonate sedimentation ended when the cratonic margins collided with and were overridden by the Atlantic coast-normal Northern Damara and coast-parallel Kaoko orogens at 0.60-0.58?Ga. A forebulge disconformity separates Otavi/Swakop Group from overlying foredeep clastics. In the cratonic cusp, where the orogens meet at a right angle, the forebulge disconformity has an astounding ?1.85?km of megakarstic relief, and km-thick mass slides were displaced gravitationally toward both trenches, prior to orogenic shortening responsible for the craton-rimming fold belt.
DS202109-1473
2021
Hollis, J.C., Kirk;amd, C.., Hartnady, M., Barham, M., Steenfelt, A.Earth's continents share an ancient crustal ancestor.Eos, https://doi.org/10.1029/2021EO162087.Europe, Greenlandgeochronology - zircon

Abstract: The jigsaw fit of Earth’s continents, which long intrigued map readers and inspired many theories, was explained about 60 years ago when the foundational processes of plate tectonics came to light. Topographic and magnetic maps of the ocean floor revealed that the crust—the thin, rigid top layer of the solid Earth—is split into plates. These plates were found to shift gradually around the surface atop a ductile upper mantle layer called the asthenosphere. Where dense oceanic crust abuts thicker, buoyant continents, the denser crust plunges back into the mantle beneath. Above these subduction zones, upwelling mantle melt generates volcanoes, spewing lava and creating new continental crust.
DS202107-1102
2021
Holt, A.F., Condit, C.B.Slab temperature evolution over the lifetime of a subduction zone.Geochemistry, Geophysics, Geosytems, 22p. PdfMantlesubduction

Abstract: The thermal evolution of subducting slabs controls a range of subduction processes, yet we lack a robust understanding of how thermal structure develops over a subduction zone's lifetime. We investigate the time-dependence of slab thermal structure using dynamically consistent, time evolving models. Pressure-temperature (P-T) conditions along the slab Moho and slab top exhibit substantial variability throughout the various phases of subduction: initiation, free sinking, and mature subduction. This variability occurs in response to time-dependent subduction properties (e.g., fast vs. slow convergence) and thermal structure inherited from previous phases (e.g., due to upper plate aging). At a given depth, the slab cools rapidly during initiation, after which slower cooling occurs. In the case of the Moho, additional cooling occurs during the free sinking phase. We explore the implications of time-dependent thermal structure on exhumed rocks and slab dehydration. Modeled slab top P-T paths span much of the P-T space associated with exhumed rocks, suggesting a significant component of recorded variability may have dynamic origins. Coupling our P-T profiles with thermodynamic models of oceanic lithosphere, we show that dehydrating ultramafic rocks at the slab Moho provide the bulk of hydrous fluid at subarc depths during the earliest phases. Over subsequent phases, these rocks carry fluids into the deeper mantle, and it is mafic crust along the slab top that releases water at subarc depths. We conclude that varying subduction conditions, and non-steady-state thermal structure, challenge the utility of kinematically driven models with constant subduction parameters, particularly for investigating thermal structure in the geological past.
DS202101-0015
2020
Houser, C., Hernlund, J.W., Valencia-Cardona, J., Wentzcovitch, R.M.Discriminating lower mantle composition.Physics of the Earth and Planetary Interiors, Vol. 308, 106552, 14p. PdfMantlegeophysics - seismics

Abstract: Constraining Earth's bulk composition is fundamental to understanding our planet's formation and evolution. While the lower mantle accounts for a majority of the bulk silicate Earth, it is also the least accessible. As experimental and theoretical mineral physics constraints on mineral elasticity at lower mantle temperatures and pressures have improved, comparisons between predicted seismic velocity and density profiles for hypothesized bulk compositions and 1D seismic models have become commonplace. However, the degree to which a given composition is a better or worse fit than another composition is not always reported, nor are the influences of the assumed temperature profile and other uncertainties discussed. Here we compare seismic velocities and densities for perovskitite, pyrolite, and harzburgite bulk compositions calculated using advanced ab initio techniques to explore the extent to which the associated uncertainties affect our ability to distinguish between candidate compositions. We find that predicted differences between model compositions are often smaller than the influence of temperature uncertainties and therefore these comparisons lack discriminatory power. The inability to distinguish between compositions is largely due to the high sensitivity of seismic properties to temperature accompanied by uncertainties in the mantle geotherm, coupled with diminished sensitivity of seismic velocity to composition toward the base of the mantle. An important exception is the spin transition in (Mg,Fe)O-ferropericlase, which is predicted to give a distinct variation in compressional wave velocity that should distinguish between relatively ferro-magnesian and silica-rich compositions. However, the absence of an apparent spin transition signature in global 1D seismic profiles is a significant unresolved issue in geophysics, and it has important geochemical implications. The approach we present here for establishing discriminatory power for such comparisons can be applied to any estimate of seismic velocities and associated uncertainties, and offers a straightforward tool to evaluate the robustness of model comparisons.
DS202102-0199
2021
Houser, C., Hernlund, J.W., Valencia-Cardona, J., Wentzcovitch, R.M.Discriminating lower mantle composition.Physics of the Earth and Planetary Interiors, Vol. 308, di.org/10.1016 /jpepi.2020. 106552 14p. PdfMantlegeophysics - seismics

Abstract: Constraining Earth's bulk composition is fundamental to understanding our planet's formation and evolution. While the lower mantle accounts for a majority of the bulk silicate Earth, it is also the least accessible. As experimental and theoretical mineral physics constraints on mineral elasticity at lower mantle temperatures and pressures have improved, comparisons between predicted seismic velocity and density profiles for hypothesized bulk compositions and 1D seismic models have become commonplace. However, the degree to which a given composition is a better or worse fit than another composition is not always reported, nor are the influences of the assumed temperature profile and other uncertainties discussed. Here we compare seismic velocities and densities for perovskitite, pyrolite, and harzburgite bulk compositions calculated using advanced ab initio techniques to explore the extent to which the associated uncertainties affect our ability to distinguish between candidate compositions. We find that predicted differences between model compositions are often smaller than the influence of temperature uncertainties and therefore these comparisons lack discriminatory power. The inability to distinguish between compositions is largely due to the high sensitivity of seismic properties to temperature accompanied by uncertainties in the mantle geotherm, coupled with diminished sensitivity of seismic velocity to composition toward the base of the mantle. An important exception is the spin transition in (Mg,Fe)O-ferropericlase, which is predicted to give a distinct variation in compressional wave velocity that should distinguish between relatively ferro-magnesian and silica-rich compositions. However, the absence of an apparent spin transition signature in global 1D seismic profiles is a significant unresolved issue in geophysics, and it has important geochemical implications. The approach we present here for establishing discriminatory power for such comparisons can be applied to any estimate of seismic velocities and associated uncertainties, and offers a straightforward tool to evaluate the robustness of model comparisons.
DS202112-1930
2021
Howarth, G.H., Nembambula, T.Petrogenesis of Kaapvaal lamproites ( aka orangeites) constrained by the composition of olivine and similarities with kimberlites and other diamondiferous lamproites.Lithos, Vol. 406-407, 106499 13p. PdfAfrica, South Africaorengeites

Abstract: Kaapvaal lamproites, also known as orangeites, are H2O-rich, diamondiferous, highly micaceous, ultrapotassic rocks. Olivines in kimberlites have been shown to be extremely useful in tracking melt evolution, highlighting the importance of the chemical effects of SCLM assimilation on asthenosphere-derived melts. Kaapvaal lamproites are derived from melting metasomatised SCLM and may be expected to form an endmember to the asthenosphere melt-SCLM trend defined by kimberlites. In this contribution, we use olivine composition in Kaapvaal lamproites to further understand melt evolution in the SCLM and assess the similarity between Kaapvaal lamproite, other diamondiferous lamproites, and kimberlite petrogenesis in cratonic regions. We present olivine composition for representative on- and off-craton Kaapvaal lamproites from Finsch and Melton Wold, respectively. Olivines from these Kaapvaal lamproites are characterized by distinct core and rim zones, regardless of the size of individual grains. Polycrystalline grains are abundant at Finsch but relatively rare at Melton Wold. The olivine cores from both occurrences are predominantly Mg-rich (Fo>89) whereas Fe-rich cores (Fo<89) are rare. Mg-rich cores are interpreted to be derived from the disaggregation of mantle peridotites, including sheared peridotites, whereas Fe-rich cores are derived from olivines of the Cr-poor megacryst suite. The average Fo and NiO concentrations of the Melton Wold cores are lower than Finsch cores, likely related to less refractory off-craton mantle. The olivine rims at Finsch and Melton Wold are characterized by reverse zoning with ranges of Fo89-92 and Fo90-91, respectively. The rims are interpreted to represent crystallisation related to a complex interplay between increasing oxidation, assimilation of orthopyroxene, and increasing alkali content of the melt during evolution. The average core and rim compositions of Finsch and Melton Wold, in conjunction with data from diamondiferous lamproites of other cratonic regions, define a broad positive correlation. Kaapvaal lamproites have Mg-rich core and rim compositions, similar to that of Lac de Gras kimberlites, and interpreted to reflect sampling and equilibration of low volume Kaapvaal lamproite melt with refractory mantle. In contrast to Lac de Gras kimberlites, Kaapvaal lamproites have high abundances of groundmass phlogopite that reflect metasomatic material in the SCLM source, likely present as veins within refractory peridotite. This suggests that increasing proportions of melt-metasomatised SCLM interactions are not always linked with increasing Fe content of melts. We show that the petrogenesis of Kaapvaal lamproites is similar to that of kimberlites and lamproites from other cratonic regions, however, the high abundance of phlogopite and Fo-rich olivine rims suggest a distinct metasomatic lithology in the source and that olivine composition; i.e., a proxy for melt composition, may be strongly controlled by melt volume during melt-SCLM interactions.
DS202101-0016
2020
Hu, L., Li, Y., Chuan, M., Li, R., Ke, C., Wu, Z.Post-magmatic fluids dominate the mineralization of dolomite carbonatitic dykes next to the giant Bayan Obo REE deposit, northern China.Minerals MDPI, Vol. 10, 1117, doi:10.3390/ min10121117 20p. PdfChinadeposit - Bayan Obo

Abstract: The Bayan Obo rare earth element (REE) deposit in Inner Mongolia, northern China, is the largest REE deposit in the world, whose mineralization process remains controversial. There are dozens of carbonatite dykes that are tightly related to the deposit. Here we report the petrological and mineralogical characteristics of a typical dolomite carbonatite dyke near the deposit. The dolomite within the dyke experienced intense post-emplacement fluids metasomatism as evidenced by the widespread hydrothermal REE-bearing minerals occurring along the carbonate mineral grains. REE contents of bulk rocks and constituent dolomite minerals (>90 vol.%) are 1407-4184 ppm and 63-152 ppm, respectively, indicating that dolomite is not the dominant mineral controlling the REE budgets of the dyke. There are three types of apatite in the dyke: Type 1 apatite is the primary apatite and contains REE2O3 at 2.35-4.20 wt.% and SrO at 1.75-2.19 wt.%; Type 2 and Type 3 apatites are the products of replacement of primary apatite. The REE2O3 (6.10-8.21 wt.%) and SrO (2.83-3.63 wt.%) contents of Type 2 apatite are significantly elevated for overprinting of REE and Sr-rich fluids derived from the carbonatite. Conversely, Type 3 apatite has decreased REE2O3 (1.17-2.35 wt.%) and SrO (1.51-1.99 wt.%) contents, resulting from infiltration of fluids with low REE and Na concentrations. Our results on the dyke suggest that post-magmatic fluids expelled from the carbonatitic melts dominated the REE mineralization of the Bayan Obo deposit, and a significant fluid disturbance occurred but probably provided no extra REEs to the deposit.
DS202108-1289
2021
Hu, Z., Zeng, L., Foerster, M.W., Li, S., Zhao, L., Gao, L., Li, H., Yang, Y.Recycling of subducted continental crust: geochemical evidence from syn-exhumation Triassic alkaline mafic rocks of the southern Liaodong Peninsula, China.Lithos, 10.1016/j.lithos.2021.106353 13p. Chinaalkaline rocks

Abstract: Syn-exhumation mafic magmatism during continental collision provides insights into the crust-mantle reaction during deep subduction and the nature of orogenic lithospheric mantle in collisional orogens. In this study, we present a comprehensive data set of zircon U-Pb ages and whole-rock major-trace elements as well as Sr-Nd-Pb isotopes of alkaline mafic rocks from the southern Liaodong Peninsula, eastern China. Zircon U-Pb analyses yield Late Triassic age of 213 ± 3 to 217 ± 3 Ma, younger than the Middle Triassic ultrahigh-pressure metamorphic rocks of the Dabie-Sulu orogen. Thus, the alkaline mafic rocks are products of syn-exhumation magmatism during continental collision of the South and North China blocks. The rocks show shoshonitic affinities with high K2O (3.78-5.23 wt%) and K2O/Na2O (0.71-1.22). They are characterized by arc-like trace-element patterns with enriched LILE, Pb, and LREE, and depleted HFSE. They exhibit enriched Sr-Nd isotopic compositions with high initial 87Sr/86Sr isotopic ratios of 0.7058-0.7061 and negative ?Nd(t) values of ?13.0 to ?15.1. These results suggest involvement of recycled continental crust in their mantle source. The mantle source likely formed by the metasomatic reaction of subducted continental crust-derived melts with the overlying subcontinental lithospheric mantle during the Triassic continental collision. Decompressional melting of this metasomatized mantle formed syn-exhumation mafic magmas during the transition from convergent to extensional tectonics in the Late Triassic. Accordingly, mafic rocks from the southern Liaodong Peninsula provide a geochemical record of the subduction and recycling of continental crust into the mantle and melt-mantle reaction induced metasomatism within the orogen.
DS202105-0767
2021
Huang, R., Boffa Ballaran, T., McCammon, C.A., Miyajima, N., Frost, D.J.The composition and redox state of bridgmanite in the lower mantle as a function of oxygen fugacity.Geochimica et Cosmochimica Acta, Vol. 30, pp. 110-136.Mantleredox

Abstract: The chemistry of bridgmanite (Brg), especially the oxidation state of iron, is important for understanding the physical and chemical properties, as well as putting constraints on the redox state, of the Earth’s lower mantle. To investigate the controls on the chemistry of Brg, the Fe3+ content of Brg was investigated experimentally as a function of composition and oxygen fugacity (fo2) at 25 GPa. The Fe3+/?Fe ratio of Brg increases with Brg Al content and fo2 and decreases with increasing total Fe content and with temperature. The dependence of the Fe3+/?Fe ratio on fo2 becomes less steep with increasing Al content. Thermodynamic models were calibrated to describe Brg and ferropericlase (Fp) compositions as well as the inter-site partitioning of trivalent cations in Brg in the Al-Mg-Si-O, Fe-Mg-Si-O and Fe-Al-Mg-Si-O systems. These models are based on equilibria involving Brg components where the equilibrium thermodynamic properties are the main adjustable parameters that are fit to the experimental data. The models reproduce the experimental data over wide ranges of fo2 with a relatively small number of adjustable terms. Mineral compositions for plausible mantle bulk compositions can be calculated from the models as a function of fo2 and can be extrapolated to higher pressures using data on the partial molar volumes of the Brg components. The results show that the exchange of Mg and total Fe (i.e., ferric and ferrous) between Brg and Fp is strongly fo2 dependent, which allows the results of previous studies to be reinterpreted. For a pyrolite bulk composition with an upper mantle bulk oxygen content, the fo2 at the top of the lower mantle is ?0.86 log units below the iron-wüstite buffer (IW) with a Brg Fe3+/?Fe ratio of 0.50 and a bulk rock ratio of 0.28. This requires the formation of 0.7?wt.% Fe-Ni alloy to balance the raised Brg ferric iron content. With increasing pressure, the model predicts a gradual increase in the Fe3+/?Fe ratio in Brg in contrast to several previous studies, which levels off by 50 GPa. Oxygen vacancies in Brg decrease to practically zero by 40 GPa, potentially influencing elasticity, diffusivity and rheology in the top portion of the lower mantle. The models are also used to explore the fo2 recorded by inclusions in diamonds, which likely crystallized as Brg in the lower mantle, revealing oxygen fugacities which likely preclude the formation of some diamonds directly from carbonates, at least at the top of the lower mantle.
DS202101-0017
2020
Hughes, H.S.R., Compton-Jones, C., MvDonald, I., Kiseeva, E.S., Kamenetsky, V.S., Rollinson, G., Coggon, J.A., Kinnaird, J.A., Bybee, G.M.Base metal sulphide geochemistry of southern African mantle eclogites ( Roberts Victor): implications for cratonic mafic magmatism and metallogenesis.Lithos, doi.org/10.1016/ j.lithos.2020.105918 67p. PdfAfrica, South Africadeposit - Roberts Victor

Abstract: Platinum-group elements (PGE) display a chalcophile behaviour and are largely hosted by base metal sulphide (BMS) minerals in the mantle. During partial melting of the mantle, BMS release their metal budget into the magma generated. The fertility of magma sources is a key component of the mineralisation potential of large igneous provinces (LIP) and the origin of orthomagmatic sulphide deposits hosted in cratonic mafic magmatic systems. Fertility of mantle-derived magma is therefore predicated on our understanding of the abundance of metals, such as the PGE, in the asthenospheric and lithospheric mantle. Estimations of the abundance of chalcophile elements in the upper mantle are based on observations from mantle xenoliths and BMS inclusions in diamonds. Whilst previous assessments exist for the BMS composition and chalcophile element budget of peridotitic mantle, relatively few analyses have been published for eclogitic mantle. Here, we present sulphide petrography and an extensive in situ dataset of BMS trace element compositions from Roberts Victor eclogite xenoliths (Kaapvaal Craton, South Africa). The BMS are dominated by pyrite-chalcopyrite-pentlandite (± pyrrhotite) assemblages with S/Se ratios ranging 1200 to 36,840 (with 87% of analyses having S/Se this editing is incorrect. This should read "(with 87% of analyses having S/Se < 10,000)" Please note the 100 ppm) and are characteristically enriched in Os, Ir, Ru and Rh. Nano- and micron-scale Pd-Pt antimonide, telluride and arsenide platinum-group minerals (PGM) are observed spatially associated with BMS. We suggest that the predominance of pyrite in the xenoliths reflects the process of eclogitisation and that the trace element composition of the eclogite BMS was inherited from oceanic crustal protoliths of the eclogites, introduced into the SCLM via ancient subduction during formation of the Colesberg Magnetic Lineament c. 2.9 Ga and the cratonisation of the Kaapvaal Craton. Crucially, we demonstrate that the PGE budget of eclogitic SCLM may be substantially higher than previously reported, akin to peridotitic compositions, with significant implications for the PGE fertility of cratonic mafic magmatism and metallogenesis. We quantitatively assess these implications by modelling the chalcophile geochemistry of an eclogitic melt component in parental magmas of the mafic Rustenburg Layered Suite of the Bushveld Complex.
DS202101-0018
2020
Humbert, F., Elburg, M.A., Agangi, A., Belyanin, G., Akoh, J., Smith, A.J.B., Chou, Y-M., Beukes, N.J.A ~ 1.4 Ga alkaline mafic sill from the Carletonville area: connection to the Pilanesbeg alkaline province?South African Journal of Geology, Vol. 123, 4, pp. 597-614. pdfAfrica, South Africaalkaline rocks

Abstract: Numerous Mesoproterozoic alkaline intrusions belonging to the Pilanesberg Alkaline Province are present within the Transvaal sub-basin of the Kaapvaal Craton. The Pilanesberg Complex is the best-known example; it represents one of the world’s largest alkaline complexes, and is associated with a northwest-southeast trending dyke swarm that extends from Botswana to the southwest of Johannesburg. This paper documents the results of a petrological and geochemical study of a thin mafic sill (here referred to as an alkaline igneous body, AIB), which intrudes the ca. 2 200 Ma Silverton Formation close to the southernmost part of the Pilanesberg dyke swarm. The AIB has only been observed in cores from a borehole drilled close to Carletonville. It is hypocrystalline, containing randomly oriented elongated skeletal kaersutite crystals and 6 to 8 mm varioles mainly composed of radially oriented acicular plagioclase. These two textures are related to undercooling, probably linked to the limited thickness (70 cm) of the AIB coupled with a probable shallow emplacement depth. Ar-Ar dating of the kaersutite gives an age of ca. 1 400 Ma, similar to the age of Pilanesberg Complex. However, the AIB is an alkaline basaltic andesite and is thus notably less differentiated than the Pilanesberg Complex and some of its associated dykes, such as the Maanhaarrand dyke, for which we provide whole-rock geochemical data. Literature data indicate that the Pilanesberg dyke swarm also contains mafic hypabyssal rocks suggesting a link between the dyke swarm and the AIB. The AIB is characterized by strongly negative ?Nd and ?Hf, that cannot be related to crustal contamination, as shown by positive Ti and P anomalies, and the absence of negative Nb-Ta anomalies in mantle-normalised trace element diagrams. The AIB magma is interpreted to have been derived from a long-lived enriched, probably lithospheric mantle reservoir. The AIB thus provides important information on the magma source of the Pilanesberg Alkaline Province.
DS202106-0943
2021
Illa, B., Reshma, K.S., Kumar, P., Srinagesh, D., Haldar, C., Kumar, S., Mandal, P.Pn tomography and anisotropic study of the Indian Shield and the adjacent regions.Tectonophysics, Vo. 813, 228932 23p. PdfIndiatomography

Abstract: High-resolution P-wave velocity and anisotropy structure of the hitherto elusive uppermost mantle beneath the Indian shield and its surrounding regions are presented to unravel the tectonic imprints in the lithosphere. We inverted high quality 19,500 regional Pn phases from 172 seismological stations for 4780 earthquakes at a distance range of 2° to 15° with a mean apparent Pn velocity of 8.22 km/s. The results suggest that the Pn velocity anomalies with fast anisotropic directions are consistent with the collision environments in the Himalaya, Tibetan Plateau, Tarim Basin, and Burmese arc regions. The higher Pn anomalies along the Himalayan arc explicate the subducting cold Indian lithosphere. The cratonic upper mantle of the Indian shield is characterized by Pn velocity of 8.12-8.42 km/s, while the large part of the central Indian shield has higher mantle-lid velocity of ~8.42 km/s with dominant anisotropic value of 0.2-0.3 km/s (~7.5%) suggesting the presence of mafic ‘lava pillow’ related to the Deccan volcanism. The impressions of the rifts and the mobile belts are conspicuous in the velocity anomaly image indicating their deep seated origin. The Pn anisotropy in the Indian shield exhibits a complex pattern and deviates from the absolute plate motion directions derived from the SKS study, demonstrating the presence of frozen anisotropy in the Indian lithospheric uppermost mantle, due to the large scale tectonic deformation after its breakup from the Gondwanaland. Whereas, Pn and SKS anisotropic observations are well consistent in Tarim basin, Tibetan regions, eastern Himalayan syntaxis and the Burmese arc. The modeled anisotropic Pn clearly manifests a lower velocity anomaly bounded by 85°E and 90°E ridges in the southern Bay of Bengal. Further, 85°E ridge spatially separates the BoB lithosphere into faster and slower regions consistent with the body wave tomography and free-air gravity observation.
DS202108-1290
2021
Ionov, D.A., Wang, K.Potassium distribution and isotope composition in the lithospheric mantle in relation to global Earth's reservoirs.Geochimica et Cosmochimica Acta, doi.org/10.1016/j.gca.2021.06.033 49p. PdfMantlepotassium
DS202107-1103
2021
Ivanov, A.V., Corfu, F., Kamenetsky, V.S., Marfin, A.E., Vladykin, N.V.207Pb-excess in carbonatitic baddeleyite as the result of Pa scavenging from the melt. ( Guli Siberian traps)Geochemical Perspectives Letters, Vol. 18, pp. 11-15. pdfRussia, Siberiacarbonatite

Abstract: For the last two decades, the end of the voluminous phase of eruptions of the Siberian Traps large igneous province has been constrained by a U-Pb date of discordant baddeleyite collected from the Guli carbonatite intrusion with the assumption that the discordance resulted from unsupported 207Pb. In this study we have re-analysed baddeleyite from the same intrusion and found two types of discordance: (1) due to 207Pb-excess, and (2) radiogenic lead loss from high U mineral inclusions. The former implies that baddeleyite is an efficient scavenger of protactinium during crystallisation, leaving the magma depleted in this element. Together with a published high precision U-Pb date of 252.24?±?0.08 Ma for the Arydzhansky Formation, our new date of 250.33?±?0.38 Ma for the Guli carbonatite constrains the total duration of the voluminous eruptions of the Siberian Traps LIP at 1.91?±?0.38 million years. The lower intercept of the (231Pa)/(235U) corrected discordance line yields a date of 129.2?±?65.0 Ma, which points to the widespread Early Cretaceous rifting in East and Central Asia.
DS202109-1474
2020
Ivanov, A.V., Corfu, F., Kamenetsky, V.S., Marfin, A.E., Vladykin, N.V.207 Pb-excess in carbonatitic baddeleyite as the result of Pa scavenging from the melt.Geochemical Perspectives Letters, Vol. 18, pp. 11-15. pdfRussia, Siberiadeposit - Guli

Abstract: For the last two decades, the end of the voluminous phase of eruptions of the Siberian Traps large igneous province has been constrained by a U-Pb date of discordant baddeleyite collected from the Guli carbonatite intrusion with the assumption that the discordance resulted from unsupported 207Pb. In this study we have re-analysed baddeleyite from the same intrusion and found two types of discordance: (1) due to 207Pb-excess, and (2) radiogenic lead loss from high U mineral inclusions. The former implies that baddeleyite is an efficient scavenger of protactinium during crystallisation, leaving the magma depleted in this element. Together with a published high precision U-Pb date of 252.24?±?0.08 Ma for the Arydzhansky Formation, our new date of 250.33?±?0.38 Ma for the Guli carbonatite constrains the total duration of the voluminous eruptions of the Siberian Traps LIP at 1.91?±?0.38 million years. The lower intercept of the (231Pa)/(235U) corrected discordance line yields a date of 129.2?±?65.0 Ma, which points to the widespread Early Cretaceous rifting in East and Central Asia.
DS202106-0944
2021
Jelsma, H.A., Nesbitt, R.W., Fanning, C.M.Exploring our current understanding of the geological evolution and mineral endowment of the Zimbabwe craton.South African Journal of Geology, Vol. 124, 1, pp. 279-301. pdfAfrica, Zimbabwecraton

Abstract: A.M. Macgregor (1888-1961) is remembered for his enormous contribution to geology. His maps changed the course of geological thinking in southern Africa. Following in his footsteps we examine aspects of our current understanding of the geological evolution of the Zimbabwe Craton and, using new SHRIMP U-Pb ages of zircons from felsic volcanic and plutonic rocks from northern Zimbabwe and unpublished data related to the seminal paper by Wilson et al. (1995), a synthesis is proposed for the formation of the Neoarchaean greenstones. The data suggest marked differences (lithostratigraphy, geochemistry and isotope data, mineral endowment and deformational history), between Eastern and Western Successions, which indicate fundamentally different geodynamic environments of formation. The Eastern Succession within the southcentral part of the craton, largely unchanged in terms of stratigraphy, is reminiscent of a rift-type setting with the Manjeri Formation sediments and overlying ca. 2 745 Ma Reliance Formation komatiite magmatism being important time markers. In contrast, the Western Succession is reminiscent of a convergent margin subduction-accretion system with bimodal mafic-felsic volcanism and accompanying sedimentation constrained to between 2 715 and 2 683 Ma. At ca. 2 670 Ma, a tectonic switch likely marks the onset of deposition of Shamvaian felsic volcanism and sedimentation. The Shamvaian resembles pull-apart basin successions and is dominated by deposition of a coarse clastic sedimentary succession, with deposition likely constrained to between 2 672 and 2 647 Ma. The late tectonic emplacement of small, juvenile multiphase stocks, ranging in composition from gabbroic to granodioritic was associated with gold ± molybdenum mineralisation. Their emplacement at 2 647 Ma provides an upper age limit to the timespan of Shamvaian deposition. Amongst the youngest granites are the extensive, largely tabular late- to post-tectonic ca. 2 620 to 2 600 Ma Chilimanzi Suite granites. These granites are characterised by evolved isotopic systems and have been related to crustal relaxation and anatexis following deformation events. After their emplacement, the Zimbabwe Craton cooled and stabilised, with further deformation partitioned into lower-grade, strike-slip shear zones, and at ca. 2 575 Ma the craton was cut by the Great Dyke, its satellite dykes and related fractures.
DS202108-1291
2021
Jennings, S.J.A., Hambrey, M.J.Structures and deformation in glaciers and ice sheetsReviews of Geophysics, e2021RG000743 1Globalgeomorphology

Abstract: The major structures in the long, narrow tongue of a sub-polar valley glacier are described: namely, longitudinal foliation, crevasses, clear-ice layers related to crevasses, debris-rich layers (frequently referred to as thrust or shear planes in the past), and folds. The foliation is vertical, is as well-developed in the centre of the glacier as at the margins, and does not, apparently, form perpendicular to the principal compressive strain-rate axis, nor exactly parallel to a line of maximum shearing strain-rate, although it sometimes approximately coincides with the latter. The intensity of foliation development is not related to the magnitude of the strain-rates, but the structure consistently lies parallel to flow lines through the glacier. There is no critical extending strain-rate, as such, associated with the development of new crevasses. Some crevasses have formed where the principal extending strain-rate is as low as 0.004 a-1 while, in other areas, extending strain-rates of 0.163 a-1 have not always resulted in fracturing. Prominent clear-ice layers, referred to as crevasse traces as displayed at the glacier surface, have formed in crevasse belts parallel to the main fracture directions. These are interpreted either as tensional veins or as the result of the freezing of water in crevasses. Extension parallel to the layering occurs during flow and, near the snout, the surface dip decreases rapidly. The fact that the crevasse traces can be followed to the snout implies that fracture occurs almost to the bottom of the glacier in the source area of the traces. Near the snout, debris-rich layers have developed parallel to the crevasse traces; frequently these are marked by prominent ridge-like ice-cored moraines. It is suggested that these structures are formed by a combination of basal freezing and thrusting. Isoclinal and tight similar folds on all scales are present. Some may be formed by the passive deformation of clear-ice layers as a result of differential flow; others may arise from the lateral compression of the original stratification in areas where ice flow becomes constricted by the narrowing of the valley. An axial plane foliation sometimes is associated with these folds.
DS202109-1475
2021
Jiang, J., Muir, J.M.R., Zhang, F.Vibrational and thermodynamic properties of hydrous iron-bearing lowermost mantle minerals.MDPI Minerals, Vol. 11, 11080885 14p. PdfMantlebridgmanite

Abstract: The vibrational and thermodynamic properties of minerals are key to understanding the phase stability and the thermal structure of the Earth’s mantle. In this study, we modeled hydrous iron-bearing bridgmanite (Brg) and post-perovskite (PPv) with different [Fe3+-H] defect configurations using first-principles calculations combined with quasi-harmonic approximations (QHA). Fe3+-H configurations can be vibrationally stable in Brg and PPv; the site occupancy of this defect will strongly affect its thermodynamic properties and particularly its response to pressure. The presence of Fe3+-H introduces distinctive high-frequency vibrations to the crystal. The frequency of these peaks is configuration dependence. Of the two defect configurations, [Fe?Si+OH?] makes large effects on the thermodynamic properties of Brg and PPv, whereas [V??Mg+Fe?Mg+OH?] has negligible effects. With an expected lower mantle water concentrations of <1000 wt. ppm the effect of Fe3+-H clusters on properties such as heat capacity and thermal expansion is negligible, but the effect on the Grüneisen parameter ? can be significant (~1.2%). This may imply that even a small amount of water may affect the anharmonicity of Fe3+-bearing MgSiO3 in lower mantle conditions and that when calculating the adiabaticity of the mantle, water concentrations need to be considered.
DS202105-0768
2020
Jiang, S. Su, H., Xiong, Y., Liu, T., Zhu, K., Zhang, L.Spatial temporal distribution, geological characteristics and ore formation controlling factors of major types of rare metal mineral deposits in China.Acta Geologica Sinica, Vol. 94, 6, pp. 1757-1773.ChinaREE

Abstract: Rare metals including Lithium (Li), Beryllium (Be), Rubidium (Rb), Cesium (Cs), Zirconium (Zr), Hafnium (Hf), Niobium (Nb), Tantalum (Ta), Tungsten (W) and Tin (Sn) are important critical mineral resources. In China, rare metal mineral deposits are spatially distributed mainly in the Altay and Southern Great Xingán Range regions in the Central Asian orogenic belt; in the Middle Qilian, South Qinling and East Qinling mountains regions in the Qilian-Qinling-Dabie orogenic belt; in the Western Sichuan and Bailongshan-Dahongliutan regions in the Kunlun-Songpan-Garze orogenic belt, and in the Northeastern Jiangxi, Northwestern Jiangxi, and Southern Hunan regions in South China. Major ore?forming epochs include Indosinian (mostly 200-240 Ma, in particular in western China) and the Yanshanian (mostly 120-160 Ma, in particular in South China). In addition, Bayan Obo, Inner Mongolia, northeastern China, with a complex formation history, hosts the largest REE and Nb deposits in China. There are six major rare metal mineral deposit types in China: Highly fractionated granite; Pegmatite; Alkaline granite; Carbonatite and alkaline rock; Volcanic; and Hydrothermal types. Two further types, namely the Leptynite type and Breccia pipe type, have recently been discovered in China, and are represented by the Yushishan Nb-Ta- (Zr-Hf-REE) and the Weilasituo Li-Rb-Sn-W-Zn-Pb deposits. Several most important controlling factors for rare metal mineral deposits are discussed, including geochemical behaviors and sources of the rare metals, highly evolved magmatic fractionation, and structural controls such as the metamorphic core complex setting, with a revised conceptual model for the latter.
DS202105-0769
2021
Johnson, K., Donatti-Filho, J.P.Brauna 3 mine - South America's first diamond mine developed on a kimberlite deposit.Vancouver Kimberlite Cluster recorded, https://diamonds.eoas. ubc.ca/vancouver kimberliteclusterSouth America, Brazildeposit - Brauna

Abstract: Brazil hosts 1365 kimberlite or kimberlite-like bodies, as well as alluvial diamond deposits that have historically produced the bulk of Brazil's diamond production. Only five kimberlites have been subjected to bulk sampling evaluation using current exploration techniques and diamond recovery technology. The first of these kimberlite deposits to reach commercial production was the Brauna 3 kimberlite, with U-Pb age of 642±6 Ma elocated in the State of Bahia and owned and operated by Lipari Mineracao Ltds. The brauna mine commenced commercial production in 2016 at a capital cost of US $ 65 million, and to date has produced approximately 830,000 cts at an average recovered diamond grade of 21 cpht. The Brauna cluster features two pipe-like bodies, Brauna 3 and Brauna 7, and 22 kimberlite dyke occurrences located on the NE part of the Sao Francisco craton. A robust geological model delineates the Brauna 3 kimberlite pipe to depths of 550 and 410 m below surface for the South and Central-North Lobes, respectively. The geological model reveals a issregularly shapes kimberlite pipe which is structurally controlled by the NW trending strutural lineaments. petrographuic study of the Brauna 3 kimberlite has identified volcaniclastic and coherent kimberlites coexisting in a complex root to diatreme transition zone. The kimberlite is mineralogically close to Group 2 kimberlite containing olivine, spinel, ilmenite, phlogopite, perovskite, apatite, melilite, serpentine, carbonate and sulfates. Geochemically, the Brauna 3 kimberlite is transitional between Group 1 and Group 2 rocks.
DS202106-0945
2021
Joshi, K.B., Goswami, V., Bannerji, U.S., Shankar, R.Recent developments in instrumentation and its application in absolute dating: historical perspective and overview.** not specific to diamondsJournal of Asian Earth Sciences, Vol. 211, 104690, 23p. PdfGlobalradiometric dating

Abstract: The discovery of radioactivity in the early 20th century led to the development of several radiometric dating methods (e.g., Rb-Sr, Sm-Nd, Re-Os, U-Pb, etc.). These radiometric dating methods are frequently used in earth science studies to constrain the deposition/formation timing of various natural archives (e.g., bulk rocks, minerals, carbonaceous materials, detrital clastic sedimentary materials, ore deposits, hydrocarbon deposits). The last few decades have witnessed significant improvements in overall accuracy and precision of these absolute radiometric dating methods due to continuous developments and refinements in sample processing and analytical techniques. In this contribution, we discuss some of the frequently used radiometric dating techniques for obtaining absolute ages in various natural archives and associated advancements in the instrumentation. The present attempt emphasizes on a multi-mineral and multi-isotopic approach with continuous developments in obtaining better precision and accuracy in the ages through improved analytical and measurement protocols that are the pre-requisite in absolute dating.
DS202102-0200
2020
Joshi, K.B., Sorcar, N., Pant, N.C., Nandakumar, V., Ahmad, T., Tomson, J.K.Characterization of multiple episodes of melt generation from lower crust during Archean using amphibole composition.Episodes, doi.org/10.18814/ epiiugs/2020 /020092 24p. PdfIndiaCraton - Bundelkhand

Abstract: Spatial association of tonalite trondhjemite granodiorites (TTGs) and high-K granitoids (anatectic and hybrid granites) from the Bundelkhand Craton (BC), Central India, is well known. Geochronological data indicates multiple episodes of formation of these high silica rocks showing a spread of ~1 Ga during Paleo to Neoarchaean. In the present study, we try to understand the evolution of TTGs and high-K granitoids (hybrid granites) from the BC using amphibole composition. The amphibole in both TTGs and high-K granitoids (hybrid granites) from the BC are characterised as magmatic, zoned, and calcic in nature. We find that the amphibole composition of the studied rocks is dominated by magnesiohornblende along with less common occurrence of tschermakite, magnesiohastingsite and edenite. Overall variation in amphibole compositions in terms of exchange vectors show a well defined linear trend (except for a late stage low-grade metamorphic readjustment), which suggests melt control over crystallization and evolution of amphibole chemistry. Moreover, the geothermobarometric analysis points towards higher pressure formation of TTGs in comparison to that of high-K granitoids (hybrid granites), with nearly the same temperature conditions in both the cases. Combining all our findings, we propose the evolution of the two considered rock types through lower crustal melting under varying PH2O conditions at different depths of emplacement.
DS202105-0770
2021
Jowitt, S.M., McNulty, B.A.Geology and mining: mineral resources and reserves: their estimation, use, and abuse. *** not specific to diamonds .. Of interest for studentsSEG Discovery, No. 125, April pp. 27-36. pdfGlobaloverview

Abstract: Resource and reserve estimation is a critical step in mine development and the progression from mineral exploration to commodity production. The data inputs typically change over time and reflect variations in geoscientific knowledge as well as the modifying factors required by regulation for estimating a reserve. These factors include mineral (ore) processing, metallurgical treatment of the ore, infrastructure requirements for mine and workforce, and the transportation of processed products to buyers; others that will affect the production of metals and/or minerals from a deposit include economic, marketing, legal, environmental, social, and governmental factors. All are needed by the mining industry to quantify the contained mineralization within mineral deposits that likely warrant the significant capital investment required to build a mine. However, these resource and reserve data are estimates that change over time due to unpredicted variations in the initial inputs. Paramount to the two estimates are the quality and accuracy of the geologic inputs and the communication of these to the professionals tasked with making each estimate. Geostatistical processing of the grade of the resource has become a dominant element of the estimation process, but this requires transparent and informed communication between geologists and mining engineers with the geostatistician responsible for mathematically processing the grade data. Regulatory constraints also mean that estimated resources and reserves seldom capture the full extent of a mineral deposit. Similarly, co- and by-product metals and minerals that are commonly produced by mines may not be captured by resource and reserve estimates because of their limited economic contribution. This suggests that reporting standards for co- and by-products—particularly for the critical metals that may have a sharp increase in demand—need improvement. Finally, the importance of these data to the mining industry is such that informing investors and the broader public about the nature of resource and reserve estimates, and the meaning of associated terminology, is also essential when considering the global metal and mineral supply, and the role of mining in modern society.
DS202112-1931
2021
Kaempfer, K.M., Guentthner, W.R., Pearson, D.R.Proterozoic to Phanerozoic tectonism in southwestern Montana basement and ranges constrained by low temperature thermochronometric data.Tectonics, Vol. 40, 11 22021TC006744United States, Montanageothermometry

Abstract: Crystalline basement rocks of southwestern Montana have been subjected to multiple tectonothermal events since ?3.3 Ga: the Paleoproterozoic Big Sky/Great Falls orogeny, Mesoproterozoic extension associated with Belt-Purcell basin formation, Neoproterozoic extension related to Rodinia rifting, and the late Phanerozoic Sevier-Laramide orogeny. We investigated the long-term (>1 Ga), low-temperature (erosion/burial within 10 km of the surface) thermal histories of these tectonic events with zircon and apatite (U-Th)/He thermochronology. Data were collected across nine sample localities (n = 55 zircon and n = 26 apatite aliquots) in the northern and southern Madison ranges, the Blacktail-Snowcrest arch, and the Tobacco Root uplift. Our zircon (U-Th)/He data show negative trends between single aliquot date and effective uranium (a radiation damage proxy), which we interpreted with a thermal history model that considers the damage-He diffusivity relationship in zircon. Our model results for these basement ranges show substantial cooling from temperatures above 400°C to near surface conditions between 800 and 510 Ma. Subsequent Phanerozoic exhumation culminated by ?75 Ma. Late Phanerozoic cooling is coincident with along-strike Sevier belt thin-skinned thrusting in southeastern Idaho, and older than exhumation in basement-involved uplifts of the Wyoming Laramide province. Our long-term, low-temperature thermal record for these southwestern Montana basement ranges shows that: (a) these basement blocks have experienced multiple episodes of upper crustal exhumation and burial since Archean time, possibly influencing Phanerozoic thrust architecture and (b) the late Phanerozoic thick-skinned thrusting recorded by these rocks is among the earliest thermochronologic records of Laramide basement-involved shortening and was concomitant with Sevier belt thin-skinned thrusting.
DS202101-0019
2020
Kalugina, A.D., Zedgenizov, D.A.Micro-Raman spectroscopy assessment of chemical compounds of mantle clinopyroxenes. ( diamond)Minerals MDPI, Vol. 10, 1084, doi:10.3390/ min10121084 10p. PdfMantlespectroscopy

Abstract: The composition of clinopyroxenes is indicative for chemical and physical properties of mantle substrates. In this study, we present the results of Raman spectroscopy examination of clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes have intense Raman modes corresponding to metal-oxygen translation (~300-500 cm?1), stretching vibrations of bridging O-Si-Obr (?11~670 cm?1), and nonbridging atoms O-Si-Onbr (?16~1000 cm?1). The peak position of the stretching vibration mode (?11) for the studied clinopyroxenes varies in a wide range (23 cm?1) and generally correlates with their chemical composition and reflects the diopside-jadeite heterovalent isomorphism. These correlations may be used for rough estimation of these compounds using the non-destructive Raman spectroscopy technique.
DS202112-1932
2021
Kaminsky, F.V., Voropaev, S.A.Modern concepts on diamond genesis.Geochemistry International, Vol. 59, 11, pp. 1038-1051. pdfGlobaldiamond genesis
DS202108-1292
2021
Kaminsky, F.V., Zedgenizov, D.A.Composition, structure and dynamics of the Earth's lower mantle. Introduction for special issueLithos, https://doi.org/ 10.1016/j.lithos. 2021.106335, 4p. PdfMantlegeodynamics

Abstract: The issue is devoted to new data on composition, structure and dynamics of the Earth’s lower mantle. The Earth’s lower mantle is the largest portion of our planet, comprising more than 50 % of its volume, but major questions remain as to chemical composition, thermal regime and global heterogeneity, as well as to its role in controlling mantle dynamic processes. The composition of the lower mantle is now understood to be more complex than had been suggested in theoretic and experimental works based solely on ‘pyrolitic’ compositions. Little is known about lower-mantle mineralogy and phase chemistry, especially at greater depth. Recent studies of inclusions in so-called superdeep diamonds have revealed a range of mineral associations having their specific geochemical features. Aside from a few inclusions found in diamonds, the mineralogy of the lower mantle is, for the most part, inferred from the results of theoretic and experimental data resembling natural environments. This volume presents new results on all aspects of composition of lower mantle including high pressure measurements, petrology and geochemistry, as well as numerical modelling of both the propagation of seismic waves and the geochemical composition and physical state of the deepest mantle rocks.
DS202110-1619
2020
Kane, R.E.America's Royal Gem: Montana and Yogo sapphires.www.gemstone.org/ incolormagazine.com, Vol. 45, p. 30-39. pdfUnited States, Montanasapphires
DS202101-0020
2020
Karato, S-i., Karki, B., Park, J.Deep mantle melting, global water circulation and its implications for the stability of the ocean mass.Progress in Earth and Planetary Science, Vol. 7, 76 25p. Doi.org/10.1186 /s40645-020-00379-3 pdfMantlewater

Abstract: Oceans on Earth are present as a result of dynamic equilibrium between degassing and regassing through the interaction with Earth’s interior. We review mineral physics, geophysical, and geochemical studies related to the global water circulation and conclude that the water content has a peak in the mantle transition zone (MTZ) with a value of 0.1-1 wt% (with large regional variations). When water-rich MTZ materials are transported out of the MTZ, partial melting occurs. Vertical direction of melt migration is determined by the density contrast between the melts and coexisting minerals. Because a density change associated with a phase transformation occurs sharply for a solid but more gradually for a melt, melts formed above the phase transformation depth are generally heavier than solids, whereas melts formed below the transformation depth are lighter than solids. Consequently, hydrous melts formed either above or below the MTZ return to the MTZ, maintaining its high water content. However, the MTZ water content cannot increase without limit. The melt-solid density contrast above the 410 km depends on the temperature. In cooler regions, melting will occur only in the presence of very water-rich materials. Melts produced in these regions have high water content and hence can be buoyant above the 410 km, removing water from the MTZ. Consequently, cooler regions of melting act as a water valve to maintain the water content of the MTZ near its threshold level (~?0.1-1.0 wt%). Mass-balance considerations explain the observed near-constant sea-level despite large fluctuations over Earth history. Observations suggesting deep-mantle melting are reviewed including the presence of low-velocity anomalies just above and below the MTZ and geochemical evidence for hydrous melts formed in the MTZ. However, the interpretation of long-term sea-level change and the role of deep mantle melting in the global water circulation are non-unique and alternative models are reviewed. Possible future directions of studies on the global water circulation are proposed including geodynamic modeling, mineral physics and observational studies, and studies integrating results from different disciplines.
DS202106-0946
2021
Kargin, A.V.Multistage mantle metasomatism during the generation of kimberlite melts: evidence from mantle xenoliths and megacrysts of the Grib kimberlite, Arkangelsk, Russia.Petrology, Vol. 29, 3, pp. 221-245. pdfRussia, Arkhangelskdeposit - Grib

Abstract: Major and trace element compositions of garnet, clinopyroxene, orthopyroxene, phlogopite, and ilmenite from garnet peridotite, ilmenite-bearing peridotite (dunites), and clinopyroxene-phlogopite xenoliths, as well as megacrysts of these minerals from the Grib kimberlite, Arkhangelsk diamond province, Russia, have been analyzed. These data are used to propose a model for mantle metasomatism of lithospheric mantle by kimberlite melts, including their generation and evolution, geochemical enrichment of depleted lithosphere mantle, and formation of megacrystic assemblage. The lithospheric mantle beneath the Arkhangelsk diamond province, from its base (depth ~180-210 km) to a depth of ~100-120 km (corresponding to a pressure of 3.5 GPa) experienced extensive metasomatism along the main kimberlite melt channel. Petrography of the peridotite xenoliths indicates a progressive refertilization of depleted harzburgite into garnet lherzolite, phlogopite-garnet wehrlite, and clinopyroxene-phlogopite rocks. Metasomatic refertilization occurred shortly before the capture of these xenoliths by the kimberlite melt. The model melt compositions calculated from garnet-clinopyroxene equilibria in different types of xenoliths and megacrysts show that alkaline-carbonate-ultramafic kimberlite melt acted as a metasomatic agent in the sheared peridotite at the base of the lithospheric mantle. High-Ti garnet and high-Cr clinopyroxene megacrysts in the middle part of the lithospheric mantle, as well as the main volume of garnet lherzolite xenoliths were formed in geochemical equilibrium with the kimberlite melts, which demonstrate an increase of silicate components and fractionation of Fe-Ti phases. The modification could be related to the interaction of ascending carbonate-rich protokimberlite melts with surrounding lithospheric mantle. The similarities in the compositions of garnet, clinopyroxene, phlogopite, and ilmenite megacrysts with minerals of peridotite xenoliths in the Grib kimberlite suggest that these megacrysts are disintegrated fragments of coarsest grained metasomatized garnet lherzolite, ilmenite-bearing peridotite, and clinopyroxene-phlogopite mantle rocks or formed under the same conditions as xenoliths or directly crystallized from metasomatic melts.
DS202107-1104
2021
Kargin, A.V., Nosova, A.A., Sazonova, L.V., Tretyachenko, V.V., Larinova, Y.O., Kovalchuk, E.V.Ultramafic alkaline rocks of Kepino cluster, Arkhangelsk, Russia: different evolution of kimberlite melts in sills and pipes.Minerals MDPI, Vol. 11, 540, 33p. PdfRussia, Arkhangelskdeposit - Kepino

Abstract: To provide new insights into the evolution of kimberlitic magmas, we have undertaken a detailed petrographic and mineralogical investigation of highly evolved carbonate-phlogopite-bearing kimberlites of the Kepino cluster, Arkhangelsk kimberlite province, Russia. The Kepino kimberlites are represented by volcanoclastic breccias and massive macrocrystic units within pipes as well as coherent porphyritic kimberlites within sills. The volcanoclastic units from pipes are similar in petrography and mineral composition to archetypal (Group 1) kimberlite, whereas the sills represent evolved kimberlites that exhibit a wide variation in amounts of carbonate and phlogopite. The late-stage evolution of kimberlitic melts involves increasing oxygen fugacity and fluid-phase evolution (forming carbonate segregations by exsolution, etc.). These processes are accompanied by the transformation of primary Al- and Ti-bearing phlogopite toward tetraferriphlogopite and the transition of spinel compositions from magmatic chromite to magnesian ulvöspinel and titanomagnetite. Similar primary kimberlitic melts emplaced as sills and pipes may be transitional to carbonatite melts in the shallow crust. The kimberlitic pipes are characterised by low carbonate amounts that may reflect the fluid degassing process during an explosive emplacement of the pipes. The Kepino kimberlite age, determined as 397.3 ± 1.2 Ma, indicates two episodes of ultramafic alkaline magmatism in the Arkhangelsk province, the first producing non-economic evolved kimberlites of the Kepino cluster and the second producing economic-grade diamondiferous kimberlites.
DS202111-1771
2021
Kasuma, K.N., Prasath, H.L.R.Application of feature based principal component analysis (FPCA) technique on Landsat8 OLI multispectral data to map kimberlite pipes.Indian Journal of Science and Technology, 12p. PdfIndiaCraton - Dharwar

Abstract: Objectives: To map the kimberlite pipes emplaced in parts of Anantpur District, India using Landsat-8 OLI multispectral data. Kimberlite are considered as the primary host of natural diamond. Kimberlite pipes have very limited exposure and are altered, therefore the indirect surface indicators associated with kimberlite such as ferric iron bearing minerals (hematite, goethite), hydroxyl (clay) and carbonate (calcrete) minerals, were mapped to trace kimberlite pipe. Methods: Feature based Principal Component Analysis (FPCA) was applied over the OLI bands 2, 4, 5 and 6, and 2, 5, 6 and 7 to generate ferric iron (F image) and hydroxyl/carbonate image (H/C images). The color composite was generated by assigning RGB colours to F, H/C and F+H/C images. Findings: When matched with the pre-explored kimberlite pipe locations, it was observed that the kimberlitic pipes display different colours in the above colour composite. Hence, the Isodata clustering was carried out to segregate the classes, which resulted in 12 unique classes. Of these, the kimberlite pipes fall in 4 classes. However, due to the moderate resolution of OLI, false positive areas were also noted. Further the target area was found to be reduced by incorporating the structural control (lineament) over the emplacement of Kimberlite pipes. Novelty: The present work highlights the usefulness of the moderate resolution multispectral image in mapping the Kimberlite pipes in semiarid region, in absence of a hyperspectral sensor.
DS202107-1105
2021
Kempe, Y., Weiss, Y., Chinn, L. L., Navon, O.Multiple metasomatic diamond-forming events in a cooling lithosphere beneath Voorspoed, South Africa.Lithos, Vol. 398-399, 106285 pdfAfrica, South Africadeposit - Voorspoed

Abstract: Thermal events and metasomatic processes have influenced the Kaapvaal craton in South Africa. High-density fluids (HDFs) trapped as microinclusions in diamond are main metasomatic agents which provide an insight to these processes in the Earth's mantle. Here we present data for 15 fibrous, HDF-bearing diamonds from the Voorspoed mine, South Africa, reflecting multiple diamond-forming events in a cooling lithosphere. Analyzed by FTIR and EPMA, the Voorspoed fibrous diamonds reveal three populations that differ in their nitrogen aggregation and HDF composition. A silicic?carbonatitic group containing 11-30% B-centers, a saline group containing 5-16% B-centers, and a single high-Mg carbonatitic diamond with 0% B-centers. The distinct nitrogen aggregation of the fibrous diamond groups in Voorspoed and the lack of clear major element evolutionary trends for each HDF type or intermediate compositions between the different types suggest different time-temperature formation histories. Thermobarometry of mineral inclusions in non-fibrous monocrystalline Voorspoed diamonds (Viljoen et al., 2018) indicates that the Voorspoed lithosphere cooled by 100-200 °C since their host diamonds crystallized at high initial temperatures. High temperatures in Voorspoed lithosphere can be correlated with the eruption of the Ventersdorp flood basalts at the central Kaapvaal (ca. 2.7 Ga) or the Bushveld complex (ca. 2.06 Ga), and cooling rates of the lithosphere provide a time frame for a cooling process that originated ~2-3 Ga. Combining these data with the nitrogen aggregation systematics of fibrous and monocrystalline Voorspoed diamonds, we suggest that most Voorspoed diamonds formed during 4 metasomatic events: the oldest one recorded took place between 2 and 3 Gyr as a result of a major thermal perturbation, whereas the following three occurred between 200 and 600 Myr, 30-90 and < 30 Myr before kimberlite eruption in a cooling lithosphere. An even older (or deeper) event is hinted by a few diamonds where all nitrogen is in B-centers. The sequence of events implied by Voorspoed HDF compositional and nitrogen aggregation differences show affinities with other occurrences in South Africa (e.g. Kimberley, Finsch and Koffiefontein) and may reflect thermal and lithological variation between the central and southwest Kaapvaal lithosphere.
DS202105-0771
2021
Khokhryakov, A., Kruk, A.N., Sokol, A.G.The effect of oxygen fugacity on diamond resorption in ascending kimberlite melt.Lithos, 10.1016/j.lithos.2021.106166, 12p.Russiadeposit - Udachnaya

Abstract: When transported by magmas to the Earth's surface, diamond crystals underwent resorption, the intensity of which significantly differed in various kimberlite pipes. We experimentally simulated diamond resorption at different oxygen fugacities (fO2) in ascending kimberlite magma enriched in CO2 and H2O. The experiments were carried out using specially prepared unaltered Group I kimberlite from the Udachnaya East pipe (Yakutia) and model carbonatite at 3.0 GPa, 1200-1400 °C, and fO2 in a range of NNO-2 to NNO + 3.2 log units (where NNO is Ni-NiO buffer). Over the investigated range of conditions, resorption of octahedral diamond crystals is found to occur according to a single scenario. Negative trigons and shield-shaped laminae develop on the {111} faces and crystal edges are truncated by the surfaces of tetrahexahedroids. The rate of diamond resorption increases in all studied systems as fO2 and temperature are raised. In this case, water-enriched melts are the most aggressive media in the investigated T-fO2 interval. Among the most oxidized high-temperature melts, it is carbonatite melts depleted in SiO2 that provide the maximum rate of diamond resorption. Furthermore, the rates of diamond resorption we obtained are an order of magnitude higher than those previously measured in silicate melts containing CO2 and H2O, at fO2 values from the NNO buffer to NNO-2. Therefore, high oxygen fugacity, a temperature of ~1400 °C, and essentially carbonate composition of water-containing magma could provide a high intensity of diamond resorption at the mantle stage of magma ascent to the surface. Apparently, this process primarily influenced the formation of the appearance and preservation of natural diamond crystals in kimberlite pipes.
DS202112-1933
2020
Khokhryakov, A., Nechaev, D.V., Sokol, A.G.Microrelief of rounded diamond crystals as an indicator of the redox conditions of their resorption in a kimberlite melt.Crystals, Vol. 10, 12p. Pdf Russiadiamond morphology

Abstract: We conducted a detailed study of the morphology of diamond crystals partially dissolved in a water-bearing kimberlite melt at pressure of 6.3 GPa, temperature of 1400 °C, and two oxygen fugacities (fO2) corresponding to the Re-ReO2 buffer and near the magnetite-hematite (MH) buffer. The triangular etch pits on the {111} faces, which formed during experimental diamond dissolution, were found to completely correspond to negative trigons on natural diamond crystals in the shape and sidewalls inclination angle. Furthermore, two experimental fO2 values were associated with two relief types of the rounded tetrahexahedroid surfaces typical of natural rounded diamonds. Therefore, the surface microrelief on rounded natural diamond crystals was concluded to be an indicator of the redox conditions of natural diamond resorption.
DS202108-1293
2021
Kimberley ProcessProduction statistics for 2020.Kimberley Process *** 1p. , https://kimberley processstatistics.org /static/pdfs/ public_statistics/ 2020/20 20GlobalSummary.pdfGlobalchart
DS202104-0582
2020
Klepikov, I.V., Vasilev, E.A., Antonov, A.V.The defect impurity composition of diamond crystals with ( 100) growth pyramids from placers of the Krasnovishersk district, the Urals.Geology of Ore Deposits, Vol. 62, 8, pp. 743-753. pdfRussia, Uralscuboid diamonds

Abstract: The internal structure and spectroscopic features of cuboid diamonds from recent alluvial placers of the Krasnovishersk District (the Urals) have been investigated. Crystals were divided into four groups by their anatomy and spectroscopy: cuboids of the II group (according to the Yu.L. Orlov classification): cuboids with a transparent core and peripheral zone saturated with inclusions; crystals with mixed habit growth of ?100? and ?111? pyramids, and crystals with the sequential growth of ?100? and ?111? pyramids. In all studied crystals, the regenerative formation of the {111} face steps together with the formation of tetragonal pits on the cuboid surface was the last stage of growth. Local photoluminescence investigations have been carried out for all cubic diamond crystals of the Urals for the first time. It was established that luminescence bands at 926 and 933 nm are related to growth pyramids of ?100? and ?111?, respectively. Bands with peaks at 800, 820.5, 840, 860, and 869 nm were revealed in the luminescence systems of the cuboids of II group. We note that the cuboid diamonds from different regions of the world have similar internal structures and spectroscopic features.
DS202107-1106
2021
Kogarko, L.N., Nielsen, T.F.D.Compositional variation of eudialyte-group minerals from the Lovozero and Ilmaussaq complexes on the origin of peralkaline systems.Minerals MDPI, Vol. 11, 548, 15p. PdfRussia, Kola Peninsula, Europe, Greenlanddeposit - Lovozero, Ilimaussaq

Abstract: The Lovozero complex, Kola peninsula, Russia and the Ilímaussaq complex in Southwest Greenland are the largest known layered peralkaline intrusive complexes. Both host world-class deposits rich in REE and other high-tech elements. Both complexes expose spectacular layering with horizons rich in eudialyte group minerals (EGM). We present a detailed study of the composition and cryptic variations in cumulus EGM from Lovozero and a comparison with EGM from Ilímaussaq to further our understanding of peralkaline magma chambers processes. The geochemical signatures of Lovozero and Ilímaussaq EGM are distinct. In Lovozero EGMs are clearly enriched in Na + K, Mn, Ti, Sr and poorer Fe compared to EGM from Ilímaussaq, whereas the contents of ?REE + Y and Cl are comparable. Ilímaussaq EGMs are depleted in Sr and Eu, which points to plagioclase fractionation and an olivine basaltic parent. The absence of negative Sr and Eu anomalies suggest a melanephelinitic parent for Lovozero. In Lovozero the cumulus EGMs shows decrease in Fe/Mn, Ti, Nb, Sr, Ba and all HREE up the magmatic layering, while REE + Y and Cl contents increase. In Lovozero EGM spectra show only a weak enrichment in LREE relative to HREE. The data demonstrates a systematic stratigraphic variation in major and trace elements compositions of liquidus EGM in the Eudialyte Complex, the latest and uppermost part of Lovozero. The distribution of elements follows a broadly linear trend. Despite intersample variations, the absence of abrupt changes in the trends suggests continuous crystallization and accumulation in the magma chamber. The crystallization was controlled by elemental distribution between EGM and coexisting melt during gravitational accumulation of crystals and/or mushes in a closed system. A different pattern is noted in the Ilimaussaq Complex. The elemental trends have variable steepness up the magmatic succession especially in the uppermost zones of the Complex. The differences between the two complexes are suggested to be related dynamics of the crystallization and accumulation processes in the magma chambers, such as arrival of new liquidus phases and redistributions by mush melts
DS202103-0387
2021
Kopylova, M.G.Constraining carbonation freezing and petrography of the carbonated cratonic mantle with natural samples.Lithos, in press available 49p. PdfCanada, Nunavut, Baffin Islanddeposit - Chidliak

Abstract: Peridotite xenoliths from the Cretaceous Chidliak kimberlite province (SE Baffin Island, Canada) were recently studied by Kopylova et al. (2019). Here, we focus on rare textures, with orthopyroxene grains invariably rimmed by 3-20??m coronas of clinopyroxene, while all clinopyroxenes are rimmed by equally thin monticellite coronas. Thicker, 0.1-0.5?mm texturally equilibrated clinopyroxene also mantles garnet, and there is a gradual transition from micron- to millimeter-thick clinopyroxene mantles. We investigated the origin of these rarely preserved textures using major and trace element zoning in minerals, and measured and reconstructed bulk compositions of xenoliths. Fluxes of major elements were identified based on the conserved element ratios while accounting for the closure effect due to normalization of bulk compositions to 100%. Ca dominates the absolute elemental gain, expressed in moles per 1000?mol of Fe. The observed mineralogical and compositional changes are associated with the significant metasomatic removal of Na (70% of its budget) Al, and Cr (35% loss), minor removal of Si, Mn, Mg and Ni and the gain of Ca (~ 20%), Ti, K and incompatible trace elements. The metasomatic fluid addition beneath Chidliak was likely below 10%. The fluid was very enriched and fractionated resembling volatile-rich low-degree melts like carbonatites or kimberlites. The Chidliak peridotites were affected by "“carbonation freezing", i.e. immobilization of a carbonate-rich metasomatic agent via reactions with pyroxenes. Clinopyroxene and monticellite coronas formed in decarbonation reactions, whereby ephemeral carbonatitic fluid readily gave away Ca to silicate minerals and exsolved CO2. Chidliak peridotites highlight that it would be deceptive to imagine "carbonated peridotites" storing carbon in a normal assemblage of peridotite plus carbonate. "Carbonated peridotites" are coarse peridotites with elevated modes of clinopyroxene, garnet and olivine, and with thin rims of calcic silicate minerals storing incompatible elements. The CO2-rich magmatism on cratons and the match between the temporal Ca addition to the cratonic mantle and the observed fluxes from the carbonate-rich metasomatism underscores the importance of the latter process in shaping up the lithospheric mantle and its melts.
DS202112-1934
2021
Korolev, N., Nikitina, L.P., Goncharov, A., Dubinina, V.N., Melnik, A., Muller, D., Chen, Y-X., Zinchenko, V.N.Three types of mantle eclogite from two layers of oceanic crust: a key case of metasomatically-aided transformation of low-to-high-magnesian eclogite.Journal of Petrology, Vol. 62, 11, pp. 1-38. pdfAfrica, Angoladeposit - Catoca

Abstract: Reconstructed whole-rock (RWR) and mineral major- and trace-element compositions, as well as new oxygen isotope data, for 22 mantle eclogite xenoliths from the Catoca pipe (Kasai Craton) were used to constrain their genesis and evolution. On the basis of mineralogical and major-element compositions, the Catoca eclogites can be divided into three groups: high-alumina (high-Al) (kyanite-bearing), low-magnesian (low-Mg#), and high-magnesian (high-Mg#) eclogites. The high-Al Catoca eclogites contain kyanite and corundum; high Al2O3 contents in rock-forming minerals; rare earth element (REE) patterns in garnets showing depleted LREEs, positive Eu anomalies (1.03-1.66), and near-flat HREEs; and high Sr contents in garnets and whole-rock REE compositions. All of these features point to a plagioclase-rich protolith (probably gabbro). RWR compositions (major elements, MREEs, HREEs, Li, V, Hf, Y, Zr, and Pb) and ?18O of 5.5-7.4‰ of the low-Mg# Catoca eclogites are in good agreement with the compositions of picrite basalts and average mid-ocean ridge basalt (MORB). The depleted LREEs and NMORB-normalised Nd/Yb values of 0.07-0.41 indicate that the degree of partial melting for the majority of the low-Mg# eclogites protolith was ?30%. The narrow ?18O range of 5.5-7.4‰ near the ‘gabbro-basalt’ boundary (6‰) obtained for the high-Al and low-Mg# Catoca eclogites reflects the influence of subduction-related processes. This case shows that mantle eclogites represented by two different lithologies and originating from different protoliths—plagioclase-rich precursor, presumably gabbro (for high-Al eclogites), and basalt (low-Mg# eclogites)—can provide similar and overlapping ?18O signatures on account of the influence of subduction-related processes. Chemical compositions of the high-Mg# eclogites indicate a complicated petrogenesis, and textural signatures reveal recrystallisation. The presence of Nb-rich rutile (8-12 wt% of Nb2O5) enriched with high field strength elements (HFSE) (Zr/Hf of 72.6-75.6) and multiple trace-element signatures (including RWR, NMORB-normalised Ce/Yb of 3.9-10.6 and Sr/Y of 5.8-9.6, MgO contents of 15.7-17.9 wt%, and high Ba and Sr) provide strong evidence for deep metasomatic alteration. High Cr contents in clinopyroxene (800-3740 ppm), garnet (430-1400 ppm), and accessory rutile (700-2530 ppm), together with extremely low Li contents of 1.0-2.4 ppm in clinopyroxene, may indicate hybridisation of the eclogites with peridotite. Comparison of the chemical compositions (major and trace elements) of (1) unaltered fresh cores of coarse-grained garnets from the low-Mg# eclogites, (2) secondary garnet rims (ubiquitous in the low-Mg# eclogites), (3) proto-cores in the coarse-grained garnet (high-Mg# eclogites), and (4) homogeneous recrystallised fine-grained garnets (high-Mg# eclogites) suggests that the high-Mg# eclogites formed through recrystallisation of low-Mg# eclogite in the presence of an external fluid in the mantle. Four of the five high-Mg# samples show that mantle metasomatism inside the Kasai craton mantle beneath the Catoca pipe occurred at a depth range of 145-160 km (4.5-4.8 GPa).
DS202110-1620
2021
Korolev, N., Nikitina, L.P., Goncharov, A.,Dubinina, E., Melnik, A.E., Muller, D., Chen, Y-X., Zinchenko, V.Three types of mantle eclogite from two layers of oceanic crust: a key case of metasomatically- aided transformation of low-to-high-magnesian eclogite.Journal of Petrology, 10.1093/petrology /egab070 98p. PdfAfrica, Angoladeposit - Catoca

Abstract: Reconstructed whole-rock and mineral major- and trace-element compositions, as well as new oxygen isotope data, for 22 mantle eclogite xenoliths from the Catoca pipe (Kasai Craton) were used to constrain their genesis and evolution. On the basis of mineralogical and major-element compositions, the Catoca eclogites can be divided into three groups: high-alumina (high-Al) (kyanite-bearing), low-magnesian (low-Mg#), and high-magnesian (high-Mg#) eclogites. The high-Al Catoca eclogites contain kyanite and corundum; high Al2O3 contents in rock-forming minerals; rare earth element (REE) patterns in garnets showing depleted LREEs, positive Eu anomalies (1.03-1.66), and near-flat HREEs; and high Sr contents in garnets and whole-rock REE compositions. All of these features point to a plagioclase-rich protolith (probably gabbro). Reconstructed whole-rock compositions (major elements, MREEs, HREEs, Li, V, Hf, Y, Zr, and Pb) and ?18O of 5.5-7.4‰ of the low-Mg# Catoca eclogites are in good agreement with the compositions of picrite basalts and average mid-ocean ridge basalt (MORB). The depleted LREEs and NMORB-normalised Nd/Yb values of 0.07-0.41 indicate that the degree of partial melting for the majority of the low-Mg# eclogites protolith was ?30%. The narrow ?18O range of 5.5-7.4‰ near the ‘gabbro-basalt’ boundary (6‰) obtained for the high-Al and low-Mg# Catoca eclogites reflects the influence of subduction-related processes. This case shows that mantle eclogites represented by two different lithologies and originating from different protoliths — plagioclase-rich precursor, presumably gabbro (for high-Al eclogites), and basalt (low-Mg# eclogites) — can provide similar and overlapping ?18O signatures on account of the influence of subduction-related processes. Chemical compositions of the high-Mg# eclogites indicate a complicated petrogenesis, and textural signatures reveal recrystallisation. The presence of Nb-rich rutile (8-12 wt% of Nb2O5) enriched with HFSE (Zr/Hf of 72.6-75.6) and multiple trace-element signatures (including reconstructed whole-rock NMORB-normalised Ce/Yb of 3.9-10.6 and Sr/Y of 5.8-9.6, MgO contents of 15.7-17.9 wt%, and high Ba and Sr) provide strong evidence for deep metasomatic alteration. High Cr contents in clinopyroxene (800-3740 ppm), garnet (430-1400 ppm), and accessory rutile (700-2530 ppm), together with extremely low Li contents of 1.0-2.4 ppm in clinopyroxene, may indicate hybridisation of the eclogites with peridotite. Comparison of the chemical compositions (major and trace elements) of (1) unaltered fresh cores of coarse-grained garnets from the low-Mg# eclogites, (2) secondary garnet rims (ubiquitous in the low-Mg# eclogites), (3) proto-cores in the coarse-grained garnet (high-Mg# eclogites), and (4) homogeneous recrystallised fine-grained garnets (high-Mg# eclogites) suggests that the high-Mg# eclogites formed through recrystallisation of low-Mg# eclogite in the presence of an external fluid in the mantle. Four of the five high-Mg# samples show that mantle metasomatism inside the Kasai craton mantle beneath the Catoca pipe occurred at a depth range of 145-160 km (4.5-4.8 GPa).
DS202107-1107
2021
Kostrovitsky, S.I., Yakolev, D.A., Suvorova, L.F., Demonterova, E.I.Carbonatite-like rock in a dike of the Aikhal kimberlite pipe: comparison with carbonatites of the Nomokhtookh site ( Anabar area).Russian Geology and Geophysics, Vol. 62, pp. 605-618.Russiadeposit - Aikhal

Abstract: A dike of rock similar in composition to carbonatites has been found in the Aikhal diamondiferous pipe of the Alakit-Markha field of the Yakutian kimberlite province (YaKP). The fine-grained rock of essentially carbonate composition (dolomite and calcite) rich in thin-platy phlogopite contains minerals typical of carbonatites: monazite, baddeleyite, and pyrochlore. In the high contents and distribution of incompatible elements the rock differs significantly from kimberlites and is transitional from kimberlites to carbonatites. The content of incompatible elements in this rock is 3-5 times lower than that in carbonatite breccias of the pipes in the Staraya Rechka kimberlite field of the YaKP (Nomokhtookh site). The compositions of accessory trace element minerals from the Aikhal dike rock and the Nomokhtookh carbonatite breccias are compared. An assumption is made that the high contents of incompatible elements in the carbonatite-like rock, which caused the crystallization of accessory minerals, are due to the differentiation of kimberlite melt/fluid. The high Sr isotope ratios indicate that the rock altered during hydrothermal and metasomatic processes. The obtained data on the composition of the carbonatite-like rock cannot serve as an argument for the genetic relationship between the Aikhal kimberlites and typical carbonatites. The genetic relationship between kimberlites and carbonatites in the northern fields of the YaKP remains an open issue.
DS202109-1476
2021
Kostyuk, A.V., Gorbachev, N.S., Nekrasov, A.N.Petrogenesis of garnet-bearing carbonatite in the Tromso Nappe, Norway.Geochemistry International, Vol. 59, 8, pp. 801-812. pdfEurope, Norwaydeposit - Tromso Nappe

Abstract: The paper presents data on phase relations in garnet-bearing carbonatite from the Tromsø Nappe, Norway. The carbonatite matrix consists of calcite-dolomite carbonate with three generations of garnet inclusions (up to 15-20%). The relics of the primary garnets (Grt1) are depleted (<10-2 wt %) in the rare earth elements (REE). The garnet of the second and third generations (Grt2-3) is anomalously enriched (up to 10-15 wt %) in the light REE (LREE), and the carbonates are depleted in these elements. The distribution of REE between the garnet and carbonate indicates the absence of equilibrium. The melting of the carbonatite at T = 950-1400°C, P = 4.0 GPa showed that the “dry” solidus temperature is 1150°C, and the liquidus temperature is >1300°C. In the experiment with H2O + CO2 fluid, the solidus and liquidus temperatures are ?950 and 1250°C, respectively. The subsolidus association is calcite, garnet, clinopyroxene, biotite, and accessory minerals: apatite, ilmenite, rutile, and titanite. The garnet and carbonatite melt occur in reaction relationships, as is evident from the garnet zoning with a decrease in the FeO and increase in the MgO, CaO, TiO2, and LREE concentrations. The geological setting, phase relationships, and experimental data indicate that the garnet-bearing carbonatites in the Tromsø area were formed in relation to the carbonatization and melting of upper mantle material at high pressures during the collision of the Baltica and Laurentia plates in the course of the Caledonian orogenesis, with subsequent intrusion and crystallization of silicate-carbonate magmas.
DS202103-0388
2018
Kozlov, E., Fomina, E., Sidorov, M., Shilovskikh, V.Ti-Nb mineralization of late carbonatites and role of fluid in its formation: Petyayan-Vara rare-earth carbonatites ( Vuoriyarvi Massif, Russia). ***dateMDPI Applied Sciences, 19p. PdfRussiacarbonatite

Abstract: This article is devoted to the geology of titanium-rich varieties of the Petyayan-Vara rare-earth dolomitic carbonatites in Vuoriyarvi, Northwest Russia. Analogues of these varieties are present in many carbonatite complexes. The aim of this study was to investigate the behavior of high field strength elements during the late stages of carbonatite formation. We conducted a multilateral study of titanium- and niobium-bearing minerals, including a petrographic study, Raman spectroscopy, microprobe determination of chemical composition, and electron backscatter diffraction. Three TiO2-polymorphs (anatase, brookite and rutile) and three pyrochlore group members (hydroxycalcio-, fluorcalcio-, and kenoplumbopyrochlore) were found to coexist in the studied rocks. The formation of these minerals occurred in several stages. First, Nb-poor Ti-oxides were formed in the fluid-permeable zones. The overprinting of this assemblage by residual fluids led to the generation of Nb-rich brookite (the main niobium concentrator in the Petyayan-Vara) and minerals of the pyrochlore group. This process also caused niobium enrichment with of early generations of Ti oxides. Our results indicate abrupt changes in the physicochemical parameters at the late hydro (carbo) thermal stage of the carbonatite formation and high migration capacity of Ti and Nb under these conditions. The metasomatism was accompanied by the separation of these elements.
DS202104-0583
2020
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review.Geology of Ore Deposits, Vol. 62,8, pp. 704-718. pdfRussia, Canadaalkaline rocks

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202105-0772
2021
Krivovichev, V.G., Charykova, M.V., Krivovichev, S.V.Mineral systems based on the number of species-defining chemical elements in minerals: their diversity, complexity, distribution, and the mineral evolution of the Earth's crust: a review. Mentions Khibiny, Lovozero, Mount St. HilaireGeology of Ore Deposits, Vol. 62, 8, pp. 704-718. pdfRussia, Canada, QuebecMineralogy

Abstract: The chemical diversity of minerals can be analyzed in terms of the concept of mineral systems based on the set of chemical elements that are essential for defining a mineral species. Only species-defining elements are considered to be essential. According to this approach, all minerals are classified into ten types of mineral systems with the number of essential components ranging from 1 to 10. For all known minerals, only 70 chemical elements act as essential species-defining constituents. Using this concept of mineral systems, various geological objects may be compared from the viewpoint of their mineral diversity: for example, alkali massifs (Khibiny and Lovozero in Russia; Mont Saint Hilaire in Canada), evaporite deposits (Inder in Kazakhstan and Searles Lake in the United States), fumaroles of active volcanoes (Tolbachik in Kamchatka and Vulcano in Sicily, Italy), and hydrothermal deposits (Otto Mountain in the United States and El Dragon in Bolivia). Correlations between chemical and structural complexities of the minerals were analyzed using a total of 5240 datasets on their chemical compositions and 3989 datasets on their crystal structures. The statistical analysis yields strong and positive correlations (R2 > 0.95) between chemical and structural complexities and the number of different chemical elements in a mineral. The analysis of relationships between chemical and structural complexities provides strong evidence for the overall trend of a greater structural complexity at a higher chemical complexity. Following R. Hazen, four groups of minerals representing four mineral evolution stages have been considered: (I) “Ur-minerals,” (II) minerals from chondrite meteorites, (III) Hadean minerals, and (IV) contemporary minerals. According to the obtained data, the number of species-defining elements in minerals and their average contents increase regularly and significantly from stage I to stage IV. The analyzed average chemical and structural complexities in these four groups demonstrate that both are gradually increasing in the course of mineral evolution. The increasing complexity follows an overall trend: the more complex minerals were formed in the course of geological time, without replacing the simpler ones. The observed correlations between chemical and structural complexities understood in terms of the Shannon information suggest that chemical differentiation is the major force that drives the increase of mineral complexity over the course of geological time.
DS202108-1294
2021
Krmicek, L., Magna, T., Chalapathi Rao, Pandey, A.Lithium isotopes in kimberlites, lamproites and lamprophyres as tracers of source components and processes related to supercontinent cycles.Geological Society of London Special Publications, doi:10.1144/SP513-2021-60geodynamics

Abstract: Our pilot study reveals potential fingerprints of Li isotopes recorded in the Mesoproterozoic (?1.4-1.1 Ga) kimberlites, lamproites and lamprophyres from the Eastern Dharwar Craton and Paleocene (62 Ma) orangeite from the Bastar Craton in India. The new data are interpreted in the context of available Li isotope composition of lamproitic to lamprophyric rocks occurring in Variscan (Bohemian Massif) and Alpine-Himalayan (SW Tibet) orogenic belts formed in response to Gondwana-Pangea amalgamation and break-up. As a result of supercontinents development, kimberlites from the Eastern Dharwar Craton and ‘orangeite’ from the Bastar Craton show clear presence of a component with a heavy Li isotope signature (?7Li up to 9.7‰) similar to an ancient altered oceanic crust, whereas the Eastern Dharwar Craton lamproites (2.3-6.3‰) and lamprophyres (3.3-6.7‰) show Li isotope signatures indicative of a dominant contribution from heterogeneous lithospheric mantle. Variscan lamprophyric to lamproitic rocks and post-collisional mantle-derived (ultra)potassic volcanic rocks from SW Tibet, i.e., rocks from the orogenic belts outside the cratonic areas, are characterized by a clear Li isotope shift towards isotopically lighter component (?7Li as low as -9.5‰) comparable with the involvement of an evolved continental crust and high-pressure metamorphic rocks in their orogenic mantle source. Such components with isotopically light Li are strikingly missing in the source of cratonic kimberlites, lamproites and lamprophyres.
DS202101-0021
2020
Krmicek, L., Romer, R.L., Timmerman, M.J., Ultych, J., Glodny, J.Long lasting ( 65Ma) regionally contrasting Late-to Post-orogenic variscan mantle-derived potassic magmatism in the Bohemian Massif.Journal of Petrology, Vol. 61, 7, doi.org/10.1093 /petrology/egaa072Europemagmatism

Abstract: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340-310?Ma lamprophyre-lamproite orogenic association; and (ii) a 300-275?Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognized in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres; (ii) alkaline ‘orthopyroxene minettes’ and geochemically related rocks grouped here under the new term lampyrite; and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr-Nd-Pb-Li isotope composition and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterized by variable negative ?Nd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterized by positive ?Nd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of ‘orthopyroxene minettes’ are characterized by isotopically light (‘eclogitic’) Li and strongly radiogenic (crustal) Sr and may have been metasomatized by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterized by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatized predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
DS202101-0022
2020
Kropac, K., Dolnicek, Z., Uher, P., Burianek, D., Safai, A., Urubek, T.Zirconian-niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: products of hydrothermal overprint of leucocratic teschenites ( Sileasian Unit, outer western Carpathians, Czech Republic).Geologica Carpathica ** Eng, Vol. 71, 4, pp. 343-360. pdfEurope, Czech Republicalkaline rocks

Abstract: Sills of hydrothermally altered alkaline magmatic rock (teschenite) of Lower Cretaceous age at the ?er?ák and ?epišt? sites in the Silesian Unit (Flysch Belt of the Outer Western Carpathians, Czech Republic) host leucocratic dykes and nests which contain accessory minerals enriched in Zr, Nb and REE: Zr-, Nb-rich titanite, zircon, gittinsite, pyrochlore, monazite, REE-rich apatite, epidote, and vesuvianite. Titanite forms wedge-shaped crystals or irregular aggregates enclosed in the analcime groundmass or overgrowths on Zr-rich ferropargasite and taramite or Zr-rich aegirine-augite to aegirine. Titanite crystals show oscillatory or irregular patchy to sector zoning and contain up to 17.7 wt. % ZrO2 and 19.6 wt. % Nb2O5, and ?1.1 wt. % REE2O3. High-field-strength elements (HFSE) are incorporated into the structure of the studied titanite predominantly by substitutions: (i) [6]Ti4+???[6]Zr4+; (ii) [6]Ti4+?+?[6]Al3+???[6]Zr4+?+?[6]Fe3+; and (iii) [6]2Ti4+???[6]Nb5+?+?[6](Al, Fe)3+. Magmatic fractional crystallization, high-temperature hydrothermal autometasomatic overprint and low-temperature hydrothermal alterations resulted in the formation of the HFSE-rich mineral assemblages within the leucocratic teschenites. Autometamorphic processes caused by high-temperature hypersaline aqueous solutions (salinity ~50 wt. %, ~390-510 °C), which were released from the HFSE-enriched residual melt, played a major role in the crystallization of Zr-, Nb-, and REE-rich minerals. The mobilization of HFSE could have occurred either by their sequestration into a fluid phase exsolved from the crystallizing melt or by superimposed alteration processes. The distinctive positive Eu anomaly (EuCN/Eu*?=?1.85) of leucocratic dykes infers possible mixing of Eu2+-bearing magmatic fluids with more oxidized fluids.
DS202107-1108
2021
Krueger, H.E., Gama, I., Fischer, K.M.Global patterns in cratonic mid-lithospheric discontinuities from Sp receiver functions. ( shield)Geochemistry, Geophysics, Geosytems, 19p. PdfCanada, Ontariogeophysics - seismics

Abstract: We investigate the structure of the continental lithosphere (tectonic plate) in regions that have had negligible tectonic activity, such as mountain building, for the past 500 million years. The internal structure of the lithosphere in these regions can be indicative of the ancient processes that first formed continents. Due to challenges in methodology, layering within the upper 150 km of the continental lithosphere is poorly understood. We carefully process earthquake data to avoid problems that previous studies encountered. We observe layering in 50% of the ancient continental regions. Most of this layering can be explained by the presence of minerals that have lower seismic velocities than the surrounding rock because they have been altered by fluids during the formation of the continent. In regions closer to more recent tectonic activity, some layering has stronger seismic velocity decreases, indicating the effects of more recent alteration. We also find that layering is more prevalent in the continental regions that last experienced tectonic activity no later than 1.6 billion years ago. This corresponds with a global transition in the depth to which the subducting lithosphere carries fluids into the mantle, indicating that subduction has a key role in generating layering in the ancient continental lithosphere.
DS202107-1109
2021
Kruk, M.N., Doroshkevich, A.G., Prokopyev, I.R., Izbrodin, I.A.Mineralogy of phoscorites of the Arbarastakh complex, Republic of Sakha, Yakutia, Russia).Minerals MDPI, Vol. 11, 556 24p. PdfRussia, Yakutiacarbonatite

Abstract: The Arbarastakh ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton and contains ore-bearing carbonatites and phoscorites with Zr-Nb-REE mineralization. Based on the modal composition, textural features, and chemical compositions of minerals, the phoscorites from Arbarastakh can be subdivided into two groups: FOS 1 and FOS 2. FOS 1 contains the primary minerals olivine, magnetite with isomorphic Ti impurities, phlogopite replaced by tetraferriphlogopite along the rims, and apatite poorly enriched in REE. Baddeleyite predominates among the accessory minerals in FOS 1. Zirconolite enriched with REE and Nb and pyrochlore are found in smaller quantities. FOS 2 has a similar mineral composition but contains much less olivine, magnetite is enriched in Mg, and the phlogopite is enriched in Ba and Al. Of the accessory minerals, pyrochlore predominates and is enriched in Ta, Th, and U; baddeleyite is subordinate and enriched in Nb. Chemical and textural differences suggest that the phoscorites were formed by the sequential introduction of different portions of the melt. The melt that formed the FOS 1 was enriched in Zr and REE relative to the FOS 2 melt; the melt that formed the FOS 2 was enriched in Al, Ba, Nb, Ta, Th, U, and, to a lesser extent, Sr.
DS202104-0584
2021
Krzemnicki, M.S., Wang, H.O., Buche, S.A new type of emerald from Afghanistan's Panjshir Valley.Journal of Gemmology, Vol. 37, 5, pp. 474-495.Asia, Afghanistanemerald

Abstract: Since 2017, a new type of emerald from the Panjshir Valley, Afghanistan, has entered the gem trade. This material is commonly of excellent quality and compares with the finest emeralds from Colombia, not only visually, but also with respect to inclusions, spectral features and chemical composition. As a result, some of these stones have entered the market as Colombian emeralds. This study presents detailed microscopic, spectral and trace-element data for these recently produced Afghan emeralds and compares them to ‘classic’ emeralds from the Panjshir Valley and from Laghman Province in Afghanistan. The samples from each of the three Afghan occurrences showed differences in their UV-Vis-NIR spectra and water-related features in their Raman spectra, and they could also be distinguished from one another-as well as those from other important emerald deposits worldwide- by their trace-element composition. A distinctly higher Fe concentration is the main criterion that separates the recent Panjshir production from Colombian emeralds. This study further shows that it is possible to clearly differentiate emeralds from different localities based on trace-element data using t-SNE statistical processing, which is an unsupervised machine-learning method.
DS202104-0585
2021
Kubik, E., Siebert, J., Blanchard, I., Agranier, A., Mahan, B., Moynier, F.Earth's volatile accretion as told by Cd, Bi, Sb and Ti core-mantle distribution.Geochimica et Cosmochimica Acta, in press available, 35p. PdfMantlegeodynamics
DS202103-0389
2020
Kumar, A., Talukdar, D., Chalapathi Rao, N.V., Burgess, R., Lehmann, B.Mesoproterozoic 40Ar-39Ar ages of some lamproites from the Cuddapah Basin and eastern Dharwar craton, southern India: implications for diamond provenance of the Banganapalle conglomerates, age of the Kurnool Group and Columbia tectonics.Geological Society, London, Special Publication , 10.1144/SP513- 2020-247 53p. PdfIndialamproites

Abstract: We report Mesoproterozoic 40Ar-39Ar (whole-rock) ages of lamproites from (i) the Ramadugu field (R4 dyke : 1434 ± 19 Ma and R5 dyke: 1334 ± 12 Ma) and the Krishna field (Pochampalle dyke: 1439 ± 3 Ma and Tirumalgiri dyke: 1256 ± 12 Ma) from the Eastern Dharwar Craton (EDC) and (ii) the Garledinne (1433 ± 8 Ma) and the Chelima (1373 ± 6 Ma) dykes from within the Paleo-Mesoproterozoic Cuddapah Basin, southern India. The ages reported for the Ramadugu and Tirumalgiri lamproites constitute their first radiometric dates. Ages of the Pochampalle and the Chelima lamproites from this study are broadly comparable to their previously reported 40Ar-39Ar (phlogopite) ages of c. 1500 Ma and 1418 ± 8 Ma, respectively. The ages of all these lamproites are much older than those of the (i) c. 1.1 Ga kimberlites from the Wajrakarur and Narayanpet fields of the EDC and (ii) c. 1.09 Ga lamproitic dykes at Zangamarajupalle which intrude the Cumbum Formation of the Cuddapah Basin. However, the age of the Tirumalgiri lamproite (c. 1256 Ma) is similar to that of the Ramannapeta lamproite (c. 1224 Ma) within the Krishna field. Our study provides evidence for protracted ultrapotassic (lamproitic) magmatism from c. 1.43 to 1.1 Ga over a widespread area (c. 2500 km2) in and around the Cuddapah Basin and the EDC. Implications of the obtained new ages for the diamond provenance of the Banganapalle Conglomerates, the age of the Kurnool Group and for the timing of break-up of the Paleo-Mesoproterozoic supercontinent of Columbia/Nuna are explored.
DS202112-1935
2021
Kumar, P., Mandal, B., Kumar, M.P.Seismic structure of the crust and lithospheric mantle of the Indian Shield: a review.Journal of the Geological Society of India, Vol. 97, 10, pp. 1169-1189.Indiageophysics - seismics

Abstract: The article reviews the history and accomplishments of CSIR-NGRI over the past 60 years, related to elucidating the seismic structure of the crust and lithospheric mantle of the Indian shield. Extensive investigations have been carried out in diverse geological and tectonic provinces of India, employing seismic reflection, refraction/wide-angle reflection and passive seismology to decipher (a) the evolution of the Indian plate through geological time, (b) hazard and its mitigation and (c) accumulation and disposition of natural resources. These endeavours entailed the application and development of state-of-the-art methodologies. Synthesis of the results from active and passive seismology reveals that the thickness of the crust varies between 28 and 65 km in the Kachchh and Aravalli regions respectively, consistent with their evolutionary histories. The thickest crust is observed in the western Dharwar craton (WDC) and the shallowest lies in the west coast. The crust in the shield region is mostly thicker, while it is thin beneath the rift zones. Results from coincident reflection and wide-angle seismic reflection studies broadly suggest a three-layered crust with magmatic underplating. Interestingly, the seismic sections traversing the Aravalli fold belt, central Indian suture zone, Dharwar craton and Southern Granulite Terrain (SGT) depict paleo-collision and subduction environments. The diverse character of the Moho, crustal fabrics and structure in different geological provinces indicate that contrasting tectonic environments might have influenced their evolution and support the hypothesis that plate tectonic processes were operative since Neoarchean. The thickness of the lithosphere estimated from receiver functions varies from 80 to 140 km. An undulation in the Lithosphere Asthenosphere Boundary reveals evidence for a flexure on a regional scale, owing to the continental collision of the Indian and Asian plates. However, the lithospheric thickness derived from surface wave dispersion studies is somewhat larger, ranging from 100 to 250 km, with some body wave tomographic studies suggesting it to be ?400 km, in consonance with the concept of Tectosphere. The thickness values derived from both the methods agree at a few locales such as the Eastern Dharwar Craton, SGT, Cambay, Singhbhum and western DVP. However, a broad disagreement prevails in WDC and northern part of the Indian shield where surface wave tomography reveals the thickness of lithosphere to be 140 to 200 km.
DS202106-0947
2021
Kumar, S., Kumar, D., Sengupta, K., Giri, T.K.Impact of community based business model and competitive advantage on exports: evidence from diamond industry.Competitive Review, Vol. 31, 2, pp. 276-296. pdfGlobalmarkets

Abstract: his study aims to examine the altering paradigms for two specific characteristics of the international diamond industry: community-based business model and competitive advantage and their impact and interaction effect.
DS202103-0390
2021
Kumar, S.P., Shaikh, A.M., Patel, S.C., Sheikh, J.M., Behera, D., Pruseth, K.L., Ravi, S., Tappe, S.Multi-stage magmatic history of olivine-leucite lamproite dykes from Banganapalle, Dharwar craton, India: evidence from compositional zoning of spinel.Mineralogy and Petrology, Vol. 115, pp. 87-112. pdfIndialamproite

Abstract: Mesoproterozoic lamproite dykes occurring in the Banganapalle Lamproite Field of southern India show extensive hydrothermal alteration, but preserve fresh spinel, apatite and rutile in the groundmass. Spinels belong to three genetic populations. Spinels of the first population, which form crystal cores with overgrowth rims of later spinels, are Al-rich chromites derived from disaggregated mantle peridotite. Spinels of the second population include spongy-textured grains and alteration rims of titanian magnesian aluminous chromites that formed by metasomatic interactions between mantle wall-rocks and precursor lamproite melts before their entrainment into the erupting lamproite magma. Spinels that crystallised directly from the lamproite magma constitute the third population and show five distinct compositional subtypes (spinel-IIIa to IIIe), which represent discrete stages of crystal growth. First stage magmatic spinel (spinel-IIIa) includes continuously zoned macrocrysts of magnesian aluminous chromite, which formed together with Al-Cr-rich phlogopite macrocrysts from an earlier pulse of lamproite magma at mantle depth. Crystallisation of spinel during the other four identified stages occurred during magma emplacement at crustal levels. Titanian magnesian chromites (spinel-IIIb) form either discrete crystals or overgrowth rims on spinel-IIIa cores. Further generations of overgrowth rims comprise titanian magnesian aluminous chromite (spinel-IIIc), magnetite with ulvöspinel component (spinel-IIId) and lastly pure magnetite (spinel-IIIe). Abrupt changes of the compositions between successive zones of magmatic spinel indicate either a hiatus in the crystallisation history or co-crystallisation of other groundmass phases, or possibly magma mixing. This study highlights how different textural and compositional populations of spinel provide important insights into the complex evolution of lamproite magmas including clues to elusive precursor metasomatic events that affect cratonic mantle lithosphere.
DS202106-0948
2021
Kusham, B., Naick, P., Pratap, A. Naganjaneyulu, K.Magnetotelluric 3-D full tensor inversion in the Dharwar craton, India: mapping of subduction polarity and kimberlitic melt.Physics of the Earth and Planetary Interiors, Vol. 315, 106708, 13p. PdfIndiakimberlites

Abstract: Complex geological structures and processes that took place in the Dharwar craton formation make it difficult to understand the evolution history. 3-D magnetotelluric inversion is a challenging task for the imaging of sub-surface structures. Data at 40 stations in a gridded fashion are used in this study for inversion. A controversy exists regarding the subduction polarity between the eastern and western Dharwar craton. Based on the conductivity anomalies mapped in the sub-surface, the lithosphere can be divided into the shallower and deeper lithosphere. The study delineated several crustal and lithospheric upper mantle conductors. In the crustal region, several conductive features (~10 ?-m) are imaged in the western part, central, and eastern part of the profile. A new finding of this 3-D study is a conductor in the eastern Dharwar craton in the depth range of 65-140 km. The base of this conductor shows the graphite diamond stability field and is correlated with the kimberlites/lamproites present in the region. An uppermost mantle conductor is present at the depth range of 80-200 km in the central part of the study area. Sulphides and carbon-rich fluids could be one cause of the conductors mapped in the crust. The low electrical resistivity imaged in the deeper lithosphere could be due to the refertilization of the mantle scar in the Cretaceous age by the passage of several hotspots. The lithospheric thickness estimated beneath the Dharwar craton in this study is more than 200 km. This study reveals geophysical evidence for the eastward subduction polarity in the Dharwar craton.
DS202103-0391
2021
Kvasnytsya, V.M., Kaminsky, F.VUnusual green type lb-lab Dniester-type diamond from Ukrainian placers.Mineralogy and Petrology, doi.org/10.1007/ s00710-020-00732-w 12p. PdfEurope, Ukrainediamond morphology

Abstract: Among placer diamond occurrences in Ukraine, a group of microdiamonds have been distinguished that have specific morphological, color and spectral characteristics, not observed in other natural diamonds. These diamonds, termed "Dniester-type diamonds", have tetrahexahedroidal and rhombododecahedroidal morphologies, green coloration, and high concentrations of single-atom, unaggregated nitrogen in the form of C-centers (66-74% of all N atoms), along with low ratios of nitrogen aggregation (0-13% agrregation ratio) and high total nitrogen content (892-1493 atomic ppm). With these characteristics, Dniester-type diamonds are approximate the Type Ib-Iab classification. The predominance of single-atom, unaggregated nitrogen indicates a short residence time under high-temperature conditions. These Dniester-type diamonds have a narrow range of carbon isotopic compositions, from ?¹³? = -10.52‰ VPDB t? -12.82‰ VPDB (average ?¹³? = -11.85‰ VPDB). They are distributed in Quaternary and Neogene sediments of the southwestern part of the Ukrainian Shield. This distribution forms a local halo within the Dniester and Southern Bug rivers interfluve and Black Sea beach sediments, approximately 650 km in length. This implies their endemic character and the likely nearby presence of primary source(s) of unknown, possibly non-kimberlitic type.
DS202112-1936
2021
Lanese, N.Earth's 1st continents arose hundreds of millions of years earlier than thought.livescience.com, Nov. 8, 5p.Globalcratons

Abstract: Earth's first continents, known as the cratons, emerged from the ocean between 3.3 billion and 3.2 billion years ago, a new study hints. This pushes back previous estimates of when the cratons first rose from the water, as various studies suggested that large-scale craton emergence took place roughly 2.5 billion years ago. "There was no uncertainty that continents were partly sticking out of water as early as 3.4 billion years ago," said Ilya Bindeman, a professor of geology at the University of Oregon, who was not involved in the new study. That's because scientists have found sedimentary rocks - which form from the broken-up bits of other rocks that have undergone erosion and weathering — that date back to that era. Such sedimentary rocks could only form once land broke through the surface of early Earth's oceans.
DS202108-1295
2021
Lapin, A.V., Kulikova, I.M., Nabelkin, O.A.Surface formations in the weathering crusts of carbonatites: implication for the genesis of unique rare metal ores in the Tomtor deposit, Russia.Lithology and Mineral Resources, Vol. 56, pp. 356-374.Russiadeposit - Tomtor

Abstract: A comparative analysis of the composition and structure of the surface facies of carbonatite weathering crusts (profiles) in the Chuktukon (Russia) and Seis Lagos (Brazil) deposits and ultra-rich rare metal ores in the Tomtor deposit (Russia) is presented. It is shown that the main geochemical trends in the formation of the Tomtor-type ultra-rich rare metal ores and the surface facies of weathering profiles are opposite. The obtained results do not confirm the genetic link between the unique Tomtor ores and the surface facies of the crust of carbonatites, but serve as evidence of their later formation due to the reductive epigenesis of carbonatite weathering products under the influence of solutions draining the overlying coaliferous rocks. Wide distribution of the phenomena of colloidal liquid layering into manganese and ferruginous fractions was established for the first time in surface facies of the weathering crust of carbonatites, and active lateral colloidal migration of Ti from the host rocks was revealed.
DS202103-0392
2020
Latutrie, B., Ross, P-S.What lithic clasts and lithic-rich facies can tell us about diatreme processes: an example at Round Butte, Hopi Buttes volcanic field, Navajo Nation, Arizona.Journal of Volcanology and Geothermal Research ( researchgate), 34p. PdfUnited States, Arizonadiatremes

Abstract: Round Butte (Hopi Buttes volcanic field, Arizona) exposes a diatreme 170-190 m across, 190 m below the pre-eruptive surface. The central part of the massif is 130-150 m in diameter, displaying 20-30 m-high subvertical cliffs. The well-known layer-cake stratigraphy of the sedimentary rocks of the Colorado Plateau permits identification of the largest lithic fragments preserved in the Round Butte diatreme. We define three main groups of pyroclastic facies: undisturbed beds, disturbed beds and non-bedded rocks. Two other minor facies groups were mapped: megablocks (blocks over 2 m in long axis), and small-volume debris avalanche deposits. Pyroclastic megablocks are finer grained and richer in lithic clasts than most diatreme rocks surrounding them. These pyroclastic megablocks are interpreted as subsided portions of the maar ejecta ring. Sedimentary megablocks originate either from above, or from the same level, relative to their current location, i.e. no megablock has a net upward displacement. Small-volume debris avalanche deposits are poorly sorted deposits resulting from gravitational destabilization of the surrounding country rocks into the syn-eruptive crater. Small-volume debris avalanches and individual megablock collapse are the main ways in which the crater grew in size laterally during the eruption. We combine the componentry of the disturbed bedded pyroclastic facies, the non-bedded pyroclastic facies and the pyroclastic megablocks with a series of conceptual models for country rock fragmentation. This exercise further allows us to estimate diatreme wall slopes of 70° below the Bidahochi Formation to approximately the depth of the root zone around 440 m below the pre-eruptive surface. Lithic fragments at the current level of exposure come from elevations up to 190 m above (i.e., up to the pre-eruptive surface) and up to 250 m below (i.e., down to the root zone) their current locations. Pyroclastic units displaying the richest content of lithic clasts with a deep origin are typically the non-bedded facies interpreted to have formed from debris jets during the eruption.
DS202106-0949
2021
Lawley, C.J.M., Somers, A.M., Kjarsgaard, B.A.Rapid geochemical imaging of rocks and minerals with handheld laser induced breakdown spectroscopy. ( LIBS)Journal of Geochemical Exploration, Vol. 222, 106694, 16p. PdfCanada, Nunavutdeposit - Jericho, Muskox

Abstract: Geochemical imaging is a powerful tool for unravelling the complex geological histories of rocks and minerals. However, its applications have until recently been restricted to geological research in a lab environment due to the cost and size of conventional instrumentation, long analysis times, and extensive sample preparation for some methods. Herein we present a rapid, qualitative geochemical imaging method for rocks and minerals using handheld LIBS. Analyses were completed directly on sawed drill core surfaces for a suite of kimberlite-hosted mantle xenoliths (Jericho and Muskox kimberlites, Nunavut, Canada). Semi-automated LIBS spectral processing following a new open-source workflow allows stitching of multiple small-area maps (each approximately 3 × 3 mm that take 2-3 min to complete) to produce cm-scale geochemical images of variably altered mantle xenolith samples (total data acquisition in 1-2 h). Replicate analyses of a Znsingle bondAl alloy reference material (NZA-1; CANMET) that were undertaken during standard-sample bracketing suggests that the relative standard deviation (RSD) is typically 15-20% for sum-normalized emission intensities above the estimated background. We demonstrate with open-source machine learning tools how qualitative LIBS spectral data can be converted to Feature-Of-Interest (FOI) maps to distinguish a variety of metasomatic and alteration features (e.g., Cr-diopside, kelyphite rims on pyrope garnet, and calcite veinlets) from the primary mantle mineralogy (e.g., olivine and orthopyroxene). Our results further demonstrate that the resolution of handheld LIBS-based geochemical imaging is sufficient to map veinlets and grain boundaries lined with metasomatic minerals. The LIBS approach is particularly sensitive for mapping the microscale distribution of elements with low atomic number (e.g., Li and Na). These light elements are difficult to detect at low concentrations with other handheld and field-portable technologies, but represent important geochemical tracers of hydrothermal and magmatic processes. Rapid LIBS mapping thus represents an emerging geochemical imaging tool for unravelling the complex geological history of rocks and minerals in the field with minimal to no sample preparation.
DS202110-1621
2021
Lawson, C., Simmiss, M.Provenance proof - new technologies to track and trace gems in the supply chain.Australian Gemmologist, Vol. 27, 5, pp. 262-271.Australiamarkets
DS202107-1110
2021
Le Bras, L.Y., Bolhar, R., Bam, L., Guy, B.M., Bybee, G.M., Nex, P.A.M.Three dimensional tectural investigation of sulfide mineralisation from the Loolekop carbonatite-phoscorite polyphase intrusion in the Phalaborwa Igneous Complex ( South Africa), with implications for ore-forming processes.Mineralogical Magazine, 19p. Pdf doi:10.1180/mgm.2021.32Africa, South Africadeposit - Phalaborwa
DS202109-1477
2021
Le Bras, L.Y., Bolhar, R., Bam, L., Guy, B.M., Bybee, G.M., Nex, P.A.M.Three-dimensional textural investigation of sulfide mineralization from the Loolekop carbonatite-phoscorite polyphase intrusion in the Phalaborwa Igneous Complex ( South Africa), with implications for ore forming processes.Mineralogical Magazine, Vol. 85, 4, pp. 514-531.Africa, South Africadeposit - Phalaborwa

Abstract: Copper-sulfides within carbonatites and phoscorites of the Phalaborwa Igneous Complex, South Africa, have been investigated since the middle of the 20th Century. However, aspects of ore formation have remained unclear. This study examines the mechanisms involved in Cu-sulfide mineralisation by micro-focus X-ray computed tomography as applied to sulfide-rich drill core samples. Several texturally distinct assemblages of magmatic sulfides can be identified, including: (1) <500 ?m rounded bornite and chalcopyrite grains disseminated within the gangue; (2) elongated mm-scale assemblages of chalcopyrite and bornite; and (3) mm-to-cm thick chalcopyrite cumulates. Chalcopyrite veins were also observed, as well as late-stage valleriite, documenting late-stage fluid circulation within the pipe, and alteration of magmatic and hydrothermal sulfides along fractures within the gangue, respectively. The results of micro-focus X-ray computed tomography indicate that magmatic sulfides are sub-vertically aligned. Spatial variability of the sulfide assemblages suggests that textural changes within sulfide layers reflect fluctuating magma flow rate during emplacement of carbonatite-phoscorite magmas, through coalescence or breakup of sulfide liquid droplets during ascent. Modal sulfide abundances, especially for disseminated assemblages, differ from one carbonatite-phoscorite layer to another, suggesting a strong control of the mechanical sorting in the formation of Cu-sulfide textures within the Loolekop carbonatite. The alternation of carbonatite and phoscorite within the intrusion suggest that the Loolekop Pipe was emplaced through a series of successive magma pulses, which differentiated into carbonatite and phoscorite by melt immiscibility/progressive fractional crystallisation and pressure drop. Three-dimensional textural analysis represents an effective tool for the characterisation of magma flow and is useful for the understanding of magmatic processes controlling sulfide liquid-bearing phoscorite-carbonatite magmas.
DS202106-0950
2021
Le Pape, F., Jones, A.G., Jessell, M.W., Hogg, C., Siebenaller, L., Perrouty, S., Tour, A., Oiuya, P., Boren, G.The nature pf the southern West Africa craton lithosphere inferred from its electrical resistivity.Precambrian Research, Vol. 358, 106190, 15p. Pdf Africageophysics

Abstract: The West-African craton is defined by a combination of Archean and Palaeoproterozoic rocks that stabilised at ~2 Ga towards the end of the Paleoproterozoic Eburnean Orogeny, and therefore may reflect the transition from Archean to modern tectonic processes. Exploring its present lithospheric architecture aids further understanding of not only the craton’s stability through its history but also its formation. We investigate the lithospheric structure of the craton through analysing and modelling magnetotelluric (MT) data from a 500-km-long east-west profile in northern Ghana and southern Burkina Faso crossing part of the Baoulé-Mossi Domain and reaching the Volta Basin in the south-eastern part of the craton. Although the MT stations are along a 2D profile, due to the complexity of the structures characterising the area, 3D resistivity modelling of the data is performed to obtain insights on the thermal signature and composition of the subcontinental lithosphere beneath the area. The thermal structure and water content estimates from different resistivity models highlight a strong dependence on the starting model in the 3D inversions, but still enable us to put constraints on the deep structure of the craton. The present?day thermal lithosphere?asthenosphere boundary (LAB) depth is estimated to be at least 250 km beneath the Baoulé-Mossi domain. The area likely transitions from a cold and thick lithosphere with relatively low water content into thinner, more fertile lithosphere below the Volta Basin. Although the inferred amount of water could be explained by Paleoproterozoic subduction processes involved in the formation of the Baoulé-Mossi domain, later enrichment of the lithosphere cannot be excluded.
DS202106-0951
2021
Le Pichon, X., Jellinek, M., Lenardic, A., Sengor, A.M.C., Imren, C.Pangea migration.Tectonics, e2020TC006585 42p. PdfMantleplate tectonics

Abstract: We confirm the proposition of Le Pichon et al. (2019) that Pangea was ringed by a hemispheric subduction girdle from its formation 400 Ma to its dispersal 100 Ma. We quantify the northward migration, that we attribute to True Polar Wander (TPW), of its axis of symmetry, between 400 Ma and 150 Ma, from southern latitudes to the equatorial zone. The spatial stabilizing within the equatorial zone of the axis of symmetry in a fixed position with respect to lower mantle, was marked by alternating CW and CCW oscillations between 250 Ma and 100 Ma that we relate to tectonic events. A subduction girdle is predicted to set up lateral temperature gradients from relatively warm sub-Pangean mantle to cooler sub-oceanic mantle. Over time, this effect acts to destabilize the Pangea landmass and its associated subduction girdle. Quantitatively, a scaling theory for the stability of the subduction girdle against mantle overturn constrains the maximum magnitude of sub-Pangean warming before breakup to be order 100 oC, consistent with constraints on Pacific-Atlantic oceanic crustal thickness differences. Our predictions are in line with recent analyses of Jurassic-Cretaceous climate change and with existing models for potential driving forces for a TPW oscillation of Pangea across the equator. The timing and intensity of predicted sub-Pangean warming potentially contributed to the enigmatically large Siberian Traps and CAMP flood basalts at 250 Ma and 201 Ma, respectively.
DS202102-0201
2021
Lebel, D.Geological survey of Canada 8.0: mapping the journey towards predictive geoscience.Hill, P.R., Lebel, D., Hitzman, M., Smelror, M., Thorleifson, H. eds The changing role of Geological Surveys . GSL SP 499, Vol. 499, pp. 28-30. pdfCanadatechnology

Abstract: The Geological Survey of Canada (GSC) has been furthering the geoscientific understanding of Canada since its inception in 1842, the equivalent of seven generations ago. The evolution of the activities of the GSC over this period has been driven by evolving geographic, economic and political contexts and needs. Likewise, new technologies and evolving scientific methods and models shaped broadly the successive generations of GSC geoscience activities. The most recent GSC generation presented a mixed portfolio of large framework mapping geoscience programmes, and more targeted, hypothesis-driven geoscience research, and the development of decision support products for a range of government, industry and other stakeholders needs. Entering its eighth generation, the GSC and related organizations are embracing digital technologies for applications such as the evaluation of mineral resource potential, the evaluation of risks and the early warning of earthquakes. In order to do so, the GSC will need to develop new methods and systems in co-operation with other geological survey organizations, and target its data acquisition and research to further advance its ability to respond to the evolving needs of society to navigate geology through space and time, from the past to the present, and from the present to the future.
DS202111-1772
2021
Legostaeva, Y.R., Gololobova, A.G.Long-term geochemical monitoring of the soil cover in the impact zone of diamond mining enterprises: a case study in the Nakyn kimberlite field, Russia.Environmental Monitoring Assessment, Vol. 193, 337, 6p. PdfRussiadeposit - Nakyn

Abstract: The most severe disturbance of the earth’s surface occurs when the open-cut method of mineral deposits mining is used. The geoecological situation was assessed based on the nature of the soil cover based on the example of an industrial site of a diamond mining and processing plant located in the permafrost zone. During the period from 2007 to 2018, the soil cover of the industrial site is characterized by polyelement contamination. In the surface, soil horizons were an increase in the concentrations of mobile forms of Mn, Zn, Cd, Cr, Co, and Ni. It is identified that AO, ABcr, and CR are the accumulation horizons if the soil profile is preserved. Mobile forms Mn, Zn, Ni, Cr, Co, and As can migrate along with the soil profile to a depth of 40-50 cm depending on the amount of soil organic matter, the degree of its decomposition, and the scale of the cryoturbation. Research in 2018 allowed us to localize and confirm the increase in the area of contamination of the industrial site. Areas with an extremely dangerous category of soil cover contamination increased by 3 times compared to 2014. The results obtained are the basis for a more detailed study of the horizons of geochemical accumulation and the creation of artificial geochemical barriers with the development of technologies for the subsequent extraction of useful components.
DS202104-0586
2021
Letnikova, E.F., Izokh, A.E., Kosticin, Y.A., Letnikov, F.A., Ershova, V.B., Federyagina, E.N., Ivanov, A.V., Nojkin, A.D., Shkolnik, S.I., Brodnikova, E.A.High-potassium volcanism approximately 640 Ma in the southwestern Siberian platform ( Biryusa uplift Sayan region).Doklady Earth Sciences, Vol. 496, 1, pp. 53-59.Russia, Siberiaalkaline rocks

Abstract: On the basis of petrographic and mineralogical studies, we have established the presence of clastic rocks with a strong predominance of K-feldspar among the rock-forming fragments within the Late Precambrian sedimentary sequence in the southwestern part of the Siberian Platform. Two types of mineralogical occurrence of K-feldspars are determined: (1) huge zonal crystal clasts with increased Ba concentrations in the central parts of the grains and (2) the main mineral phase in the form of a decrystallized glassy mass. In both cases, low concentrations of Na (lower than 0.1 wt %) are detected. K-feldspars of the second type contain intergrowths of idiomorphic rhombic dolomite with a high ankerite component. Dolomite grains contain inclusions of K-feldspar. The prevailing accessory minerals are F-apatite (with high concentrations of REEs), zircon (with high concentrations of Th), magnetite, rutile, monacite, and sinchizite. Encasement minerals with an idiomorphic shape are identified, with K-feldspar being located in the center, while the middle shell is formed by apatite with a high REE content, and the outer shell is formed by apatite without rare earth elements. These rocks are products of high-potassium volcanic activity. The age of this event has been established on the basis of U-Pb zircon dating to about 640 Ma. The Lu-Hf zircon systematics for these rocks indicates the connection of volcanism with igneous events of mantle genesis within its range. The products of explosive eruption, which are widespread within the Biryusa uplift of the Siberian Platform, were erroneously considered earlier as Riphean sedimentary rocks of the Karagas Series.
DS202106-0952
2021
Li, W., Xie, X., Song, J., Xie, R., Wang, J., Li, G.,Hou, H., Lu, J.Assessment and source identification of toxic metals in an abandoned synthetic diamond production plant from Anhui Province, China.Environmental Forensics, Vol. 22, 3-4, pp. 340-350. abstract onlyChinasynthetics

Abstract: In this study, soil and sediment samples along with groundwater samples were collected and analyzed from an abandoned synthetic diamond production plant in Anhui Province, South China. Chemical analysis, pollution characteristics analysis, and correlation analysis were conducted to assess and to determine the source(s) of the toxic metal and organic pollutions in the study sites. The Co and Ni concentrations of soil samples collected from the production area exceed the risk screening value for contaminated development land in Soil Environment Quality Standards for soil pollution risk control on construction land (Trial) of China, while the concentrations of other toxic elements such as Cr, Cu, and Zn are lower than the screening value. The PCA and HCA results are consistent with the correlation coefficient analysis and indicate that industrial activities are the main sources of Co and Ni. The chemical composition and source analysis results of soil and groundwater show that toxic metals originating from catalyst and low pH value from acid waste water should be the main point of concern in the synthetic diamond production plant.
DS202109-1478
2021
Li, Y., Levin, V., Nikulin, A., Chen, X.Systematic mapping of upper mantle seismic discontinuities beneath northeastern North America.Geochemistry, Geophysics, Geosystems, 10.1029/2021GC009710 20p. PdfUnited States, Canadageophysics- seismic

Abstract: We probe the properties of upper mantle rocks beneath northeastern North America using the observations of seismic waves from distant earthquakes. We examine signals of converted P-S waves that originate from locations of rapid vertical or directional changes in seismic velocities. These abrupt velocity boundaries are thought to originate from rock deformation, variations in composition, temperature, or melt content. The sharp transitions detectable by this method are compositionally more plausible within the cold tectonic plate than within the hot convecting asthenosphere. Previous studies in this region that analyzed the same type of seismic data report boundaries with sharp downward reduction in seismic velocities between the depths of 60 and 100 km. Their widespread distribution and local consistency with seismic velocity models was used as evidence of them marking the transition between the cold tectonic plate and the hot convecting asthenosphere. Here we expand our search to other types of boundaries and find numerous examples at much greater depths (down to ?185 km). These deeper boundaries primarily reflect changes in directional variation of seismic velocities (anisotropy). The distribution of our deep boundaries broadly agrees with lithospheric thickness estimates in global upper mantle models that consider seismic, gravity, and heat flow data.
DS202106-0953
2021
Li, Y., Sun, J., Shuling, L., Leao-Santos, M.A paradigm shift in magnetic data interpretation; increased value through magnetization inversions.Geophysics Leading Edge, Vol. 40, 2, pp. 89-98.Canada, South America, Brazilgeophysics

Abstract: Magnetic data are sensitive to both the induced magnetization in rock units caused by the present earth's magnetic field and the remanent magnetization acquired by rock units in past geologic time. Susceptibility is a direct indicator of the magnetic mineral content, whereas remanent magnetization carries information about the formation process and subsequent structural movement of geologic units. The ability to recover and use total magnetization, defined as the vectorial sum of the induced and remanent magnetization, therefore enables us to take full advantage of magnetic data. The exploration geophysics community has achieved significant advances in inverting magnetic data affected by remanent magnetization. It is now feasible to invert any magnetic data set for total magnetization. We provide an overview of the state of the art in magnetization inversion and demonstrate the informational value of inverted magnetization through a set of case studies from mineral exploration problems. We focus on the methods that recover either the magnitude of the total magnetization or the total magnetization vector itself.
DS202105-0773
2021
Liang, Y., Ji, Z., Liu, B.What can we learn from REE abundances in clinopyroxene and orthopyroxene in residual mantle peridotites?Contributions to Mineralogy and Petrology, 176, 19p. PdfMantleREE

Abstract: Clinopyroxene and orthopyroxene are the two major repositories of rare earth elements (REE) in spinel peridotites. Most geochemical studies of REE in mantle samples focus on clinopyroxene. Recent advances in in situ trace element analysis has made it possible to measure REE abundance in orthopyroxene. The purpose of this study is to determine what additional information one can learn about mantle processes from REE abundances in orthopyroxene coexisting with clinopyroxene in residual spinel peridotites. To address this question, we select a group of spinel peridotite xenoliths (9 samples) and a group of abyssal peridotites (12 samples) that are considered residues of mantle melting and that have major element and REE compositions in the two pyroxenes reported in the literature. We use a disequilibrium double-porosity melting model and the Markov chain Monte Carlo method to invert melting parameters from REE abundance in the bulk sample. We then use a subsolidus reequilibration model to calculate REE redistribution between cpx and opx at the extent of melting inferred from the bulk REE data and at the closure temperature of REE in the two pyroxenes. We compare the calculated results with those observed in clinopyroxene and orthopyroxene in the selected peridotitic samples. Results from our two-step melting followed by subsolidus reequilibration modeling show that it is more reliable to deduce melting parameters from REE abundance in the bulk peridotite than in clinopyroxene. We do not recommend the use of REE in clinopyroxene alone to infer the degree of melting experienced by the mantle xenolith, as HREE in clinopyroxene in the xenolith are reset by subsolidus reequilibration. In general, LREE in orthopyroxene and HREE in clinopyroxene are more susceptible to subsolidus redistribution. The extent of redistribution depends on the modes of clinopyroxene and orthopyroxene in the sample and thermal history experienced by the peridotite. By modeling subsolidus redistribution of REE between orthopyroxene and clinopyroxene after melting, we show that it is possible to discriminate mineral mode of the starting mantle and cooling rate experienced by the peridotitic sample. We conclude that endmembers of the depleted MORB mantle and the primitive mantle are not homogeneous in mineral mode. A modally heterogeneous peridotitic starting mantle provides a simple explanation for the large variations of mineral mode observed in mantle xenoliths and abyssal peridotites. Finally, by using different starting mantle compositions in our simulations, we show that composition of the primitive mantle is more suitable for modeling REE depletion in cratonic mantle xenoliths than the composition of the depleted MORB mantle.
DS202104-0587
2020
Lima, N.M., Azzone, R.G., Chmyz, L.Petrographic, geochemical and isotopic evidence of crustal assimilation processes in the Indiaia-II kimberlite, Alto Paranaiba Province, southeast Brazil.The Canadian Mineralogist, Vol. 58, pp. 563-585.South America, Brazil, Paranaibadeposit - Indiaia-II

Abstract: The Indaiá-I and Indaiá-II intrusions are hypabyssal, small-sized ultrabasic bodies belonging to the Cretaceous magmatism of the Alto Paranaiba Alkaline Province (southeast-central western Brazil). While Indaiá-I is classified as an archetypal group-I kimberlite, Indaiá-II (its satellite intrusion) presents several petrographic and chemical distinctions: (1) an ultrapotassic composition (similar to kamafugites), (2) lower volumes of olivine macrocrysts, (3) diopside as the main matrix phase (in contrast with the presence of monticellite in Indaiá-I), (4) high amounts of phlogopite, and (5) abundant felsic boudinaged and stretched microenclaves and crustal xenoliths. Disequilibrium features, such as embayment and sieve textures in olivine and clinopyroxene grains, are indicative of open-system processes in Indaiá-II. Mineral reactions observed in Indaiá-II (e.g., diopside formed at the expense of monticellite and olivine; phlogopite nearby crustal enclaves and close to olivine macrocrysts) point to an increase in the silica activity of the kimberlite magma; otherwise partially melted crustal xenoliths present kalsilite, generated by desilification reactions. The high Contamination Index (2.12-2.25) and the large amounts of crustal xenoliths (most of them totally transformed or with evidence of partial melting) indicate a high degree of crustal assimilation in the Indaiá-II intrusion. Calculated melts (after removal of olivine xenocrysts) of Indaiá-II have higher amounts of SiO2, Al2O3, K2O, slightly higher Rb/Sr ratios, lower Ce/Pb and Gd/Lu ratios, higher 87Sr/86Sr, and lower 143Nd/144Nd than those calculated for Indaiá-I. Crustal contamination models were developed considering mixing between the calculated melts of Indaiá-I and partial melts modeled from the granitoid country rocks. Mixing-model curves using major and trace elements and isotopic compositions are consistent with crustal assimilation processes with amounts of crustal contribution of ca. 30%. We conclude that (1) Indaiá-II is representative of a highly contaminated kimberlitic intrusion, (2) this contamination occurred by the assimilation of anatectic melts from the main crustal country rocks of this area, and (3) Indaiá-I and Indaiá-II could have had the same parent melt, but with different degrees of crustal contamination. Our petrological model also indicates that Indaiá-II is a satellite blind pipe linked to the main occurrence of Indaiá-I.
DS202108-1296
2029
Litasov, K.D., Kagi, H., Bekker, T.B., Hirata, T., Makino, Y.Cuboctahedral type lb diamonds in ophiolitic chromitites and peridotites: the evidence for anthropogenic contamination.International Journal of High Pressure Research, Vol. 39, 3, pp. 480-488.Mantlediamond morphology

Abstract: Here we present trace element compositions of synthetic diamonds, which show spectacular similarity with the compositions of metallic inclusions in type Ib cuboctahedral diamonds in ophiolitic chromitites and peridotites. The compositions of inclusions in synthetic and ophiolite diamonds closely correspond to Ni:Mn:Co?=?70:25:5 in wt.%, which is the most widely used catalyst for HPHT growth of synthetic diamonds in China. Thus, we claim for thorough reconsideration of diamonds in ophiolitic rocks and emphasize that most of them appear by anthropogenic contamination.
DS202102-0202
2021
Litasov, K.D., Kagi, H., Bekker, T.B., Makino, Y., Hirata, T., Brazhkin, V.V.Why Tolbachik diamonds cannot be natural.The American Mineralogist, Vol. 106. pp. 44-53. pdfRussiadeposit - Kamchatka

Abstract: Taking into account recent publications, we provide additional comprehensive evidence that type Ib cuboctahedral diamonds and some other microcrystalline diamonds from Kamchatka volcanic rocks and alluvial placers cannot be natural and undoubtedly represent synthetic materials, which appear in the natural rocks by anthropogenic contamination. The major arguments provided in favor of the natural origin of those diamonds can be easily disproved. They include the coexistence of diamond and deltalumite from Koryaksky volcano; coexistence with super-reduced corundum and moissanite, Mn-Ni silicide inclusions, F-Cl enrichment and F/Cl ratios, and carbon and nitrogen isotopes in Tolbachik diamonds, as well as microtwinning, Mn-Ni silicides, and other inclusions in microcrystalline diamond aggregates from other Kamchatka placers. We emphasize the importance of careful comparison of unusual minerals found in nature, which include type Ib cuboctahedral diamonds and super-reduced phase assemblages resembling industrial slags, with synthetic analogs. The cavitation model proposed for the origin of Tolbachik diamonds is also unreliable since cavitation has only been shown to cause the formation of nanosized diamonds only.
DS202109-1479
2021
Litvin, Yu.A., Spivak, A.V., Kuzyura, A.V.Physicogeochemical evolution of melts of superplumes uplift from the lower mantle to the transition zone: experiment at 26 and 20 Gpa.Geochemistry International, Vol. 66, 7, pp. 607-629. pdfMantleplumes

Abstract: The Western Pacific Triangular Zone (WPTZ) is the frontier of a future supercontinent to be formed at 250 Ma after present. The WPTZ is characterized by double-sided subduction zones to the east and south, and is a region dominated by extensive refrigeration and water supply into the mantle wedge since at least 200 Ma. Long stagnant slabs extending over 1200 km are present in the mid-Mantle Boundary Layer (MBL, 410-660 km) under the WPTZ, whereas on the Core-Mantle Boundary (CMB, 2700-2900 km depth), there is a thick high-V anomaly, presumably representing a slab graveyard. To explain the D? layer cold anomaly, catastrophic collapse of once stagnant slabs in MBL is necessary, which could have occurred at 30-20 Ma, acting as a trigger to open a series of back-arc basins, hot regions, small ocean basins, and presumably formation of a series of microplates in both ocean and continent. These events were the result of replacement of upper mantle by hotter and more fertile materials from the lower mantle.
DS202110-1622
2020
Liu, F., Guo, Y., Lv, S., Chen, G.Application of the entropy method and color difference formula to the evaluation of round brilliant cut diamond scintillation.Mathematics, Vol. 8, 9, doi.org/10.3390/ math8091489globaldiamond cutting

Abstract: A modeling approach combining the entropy method and color difference formula is proposed in order to quantitatively evaluate diamond scintillation. The images of 66 diamonds were captured from 0° to 105° rotation at 15° intervals. The color difference of corresponding pixels in adjacent rotation angle images was calculated using a MatLab r2014a program, which indicated the diamond’s color change due to its scintillation. A threshold (10) was determined to divide the color difference into seven color difference intervals, the percentage of which indicated the color-change area. The color difference and the percentage were comprehensively analyzed using the entropy method to evaluate diamond scintillation objectively and quantitatively. Lightness was the main factor affecting the diamond scintillation while chroma and hue also significantly affected it.
DS202105-0774
2021
Liu, J., Pearson, D.G., Wang, L.H., Mather, K.A., Kjarsgaard, B.A., Schaeffer, A.J., Irvine, G.J., Kopylova, M.G., Armstrong, J.P.Plume-driven recratonization of deep continental lithospheric mantle.Nature, doi.org/101038/ s41586-021-03395-5 5p. PdfCanada, Northwest Territoriescraton

Abstract: Cratons are Earth’s ancient continental land masses that remain stable for billions of years. The mantle roots of cratons are renowned as being long-lived, stable features of Earth’s continents, but there is also evidence of their disruption in the recent1,2,3,4,5,6 and more distant7,8,9 past. Despite periods of lithospheric thinning during the Proterozoic and Phanerozoic eons, the lithosphere beneath many cratons seems to always ‘heal’, returning to a thickness of 150 to 200 kilometres10,11,12; similar lithospheric thicknesses are thought to have existed since Archaean times3,13,14,15. Although numerous studies have focused on the mechanism for lithospheric destruction2,5,13,16,17,18,19, the mechanisms that recratonize the lithosphere beneath cratons and thus sustain them are not well understood. Here we study kimberlite-borne mantle xenoliths and seismology across a transect of the cratonic lithosphere of Arctic Canada, which includes a region affected by the Mackenzie plume event 1.27 billion years ago20. We demonstrate the important role of plume upwelling in the destruction and recratonization of roughly 200-kilometre-thick cratonic lithospheric mantle in the northern portion of the Slave craton. Using numerical modelling, we show how new, buoyant melt residues produced by the Mackenzie plume event are captured in a region of thinned lithosphere between two thick cratonic blocks. Our results identify a process by which cratons heal and return to their original lithospheric thickness after substantial disruption of their roots. This process may be widespread in the history of cratons and may contribute to how cratonic mantle becomes a patchwork of mantle peridotites of different age and origin.
DS202102-0203
2021
Liu, Y., Huang, R., Wu, Ye, Zhang, D., Zhang, J., Wu, X.Thermal equation of state of phase egg ( AlSi03OH): implications for hydrous phases in the deep Earth.Contributions to Mineralogy and Petrology, Vol. 176, 8 doi.org/10.1007 /s00410-020- 01758-1 10p. PdfMantlesubduction
DS202108-1297
2021
Liu, Y., Mitchell, R.N., Li, Z-X., Kirscher, U., Pisarevsky, S.A.Archean geodynamics: ephemeral supercontinents or long-lived supercratons.Geology, Vol. 49, pp. 794-798.Australiageodynamics

Abstract: Many Archean cratons exhibit Paleoproterozoic rifted margins, implying they were pieces of some ancestral landmass(es). The idea that such an ancient continental assembly represents an Archean supercontinent has been proposed but remains to be justified. Starkly contrasting geological records between different clans of cratons have inspired an alternative hypothesis where cratons were clustered in multiple, separate "supercratons". A new ca. 2.62 Ga paleomagnetic pole from the Yilgarn craton of Australia is compatible with either two successive but ephemeral supercontinents or two long-lived supercratons across the Archean-Proterozoic transition. Neither interpretation supports the existence of a single, long-lived supercontinent, suggesting that Archean geodynamics were fundamentally different from subsequent times (Proterozoic to present), which were influenced largely by supercontinent cycles.
DS202110-1623
2021
Liu, Z., Fei, H., Chen, L., McCammon, C., Katsura, T.Bridgemanite is nearly dry at the top of the lower mantle.Earth and Planetary Science Letters, Vol. 570, 117088Mantlebridgemanite

Abstract: Water solubility in the dominant lower-mantle bridgmanite phase remains controversial. Discrepancies between previous results highlight the importance of the growth high-quality single crystals of bridgmanite under high-pressure and high-temperature conditions corresponding to the top of the lower mantle. Here we synthesized high-quality single crystals of aluminous bridgmanite up to 300 ?m in size that were saturated with hydrous melt at 24-26 GPa and 1700-1900 K using both stoichiometric and MgO-rich non-stoichiometric hydrous starting materials in a multi-anvil press. Fourier-transform infrared spectroscopy measurements on clear and pure spots of the single-crystal bridgmanites did not detect any pronounced OH-stretching bands, which were prominent in some earlier studies. The present results support that the lower-mantle dominated bridgmanite is nearly dry, at least at the top of the lower mantle, and that Al3+ and Fe3+ cannot enhance water incorporation into the crystal structure even in the presence of oxygen vacancies. Large partition coefficients of water between transition-zone minerals and dry lower-mantle dominated bridgmanite further support dehydration melting at the top of the lower mantle. We suggest that the majority of the top of a pyrolitic lower mantle is nearly dry based on the dry principal minerals and stability of hydrous phases in this region.
DS202104-0588
2021
Liu, Z., Shea, J., Foley, S., Bussweiler, Y., Rohrbach, A., Klemme, S., BerndtClarifying source assemblages and metasomatic agents for basaltic rocks in eastern Australia using olivine phenocryst compositions. Basanites, melilititesLithos, in press available, 74p. PdfAustraliametasomatism

Abstract: Many Cenozoic basaltic rocks in Eastern Australia exhibit an age-progressive trend from north to south, leading to the suggestion that one or more mantle plumes passed beneath the Australian plate. Trace element patterns indicate that the source regions have been metasomatised by infiltrating melts, but the source rock assemblages have never been closely identified. Here, trace element analyses of olivine and whole rock geochemistry for several occurrences in New South Wales (Bingara-Inverell, Dubbo, Barrington and Ebor) are combined to characterize the mineralogy of the source and identify the nature of the melts that caused the metasomatic enrichment. According to Ni/Mg against Mn/Fe and Zn/Fe ratios in olivines, Zn/Fe and FC3MS (FeOT/CaO-3*MgO/SiO2) parameters in whole rocks, tholeiite, alkali basalt, and basanite rich in olivine xenocrysts from Dubbo were derived from pyroxenite-dominated mixed source, mixed pyroxenite+peridotite source, and peridotite-dominated source, respectively. Similarly, basalts from Ebor and Bingara/Inverell are suggested to originate from a mixed pyroxenite+peridotite source based on their high FC3MS values. In contrast, the source of basanite and picrobasalt from Barrington was peridotite with little pyroxenite. High Li and Zn in olivines, high P2O5/TiO2 and Zr/Hf at low Ti/Eu in whole rocks illustrate that the pyroxenite sources of basanites from Bingara/Inverell, Barrington and Dubbo resulted from variable degrees of carbonatitic metasomatism. Partial melting of peridotite metasomatised by carbonatite melts at around the spinel-garnet peridotite transition depth produced basalts and basanites from Dubbo, Barrington, Ebor, Bingara/Inverell and Buckland (Queensland). Carbonatitic metasomatism is widespread in the eastern Australian mantle lithosphere, occurring seaboard of a ledge between thick lithosphere beneath the Australian continent that stretches from Queensland, through New South Wales to Victoria.
DS202105-0775
2021
Live ScienceA remnant of a protoplanet may be hiding inside Earth.livescience.com, March 29, 2p.Mantlecore - boundary
DS202106-0954
2020
Lock, N.Use and misuse of historical estimates and data - examples from diamond projects.saimm.co.za, 8p. PdfAfrica, South Africaeconomics

Abstract: Projects with long histories must be documented in current disclosures with transparency and materiality, using historical data and historical estimates. Historical data may be of great value if it is from a reliable source, and the raw data can be validated and/or duplicated. Historical estimates can and should be reported, but with qualification of the ever-changing economic parameters of ‘Reasonable Prospects for Eventual Economic Extraction’ (RPEEE). The SAMREC Code requires current sampling results and diamond valuations, without which RPEEE cannot be assessed; consequently, historical estimates cannot ever be declared as current Diamond Resources or Reserves. The SAMREC Code defines historical estimates and provides guidance on the use of historical data. Examples from real projects and reports in the public domain are reviewed in this paper. Opinions on use and misuse are those of the writer; judgment on good or bad practice is not the intention and is left to the opinion of the reader. Comparison, with both the JORC Code (Australasia) and CIM Definition Standards and National Instrument 43-101 (Canada), is provided. The SAMREC Code appears to be more closely aligned with the Canadian standards.
DS202104-0589
2021
Lollar, B.S., Heuer, V.B., McDermott, J., Tille, S., Warr, O., Moran, J.J., Telling, J., Hinrichs, K-U.A window into the abiotic carbon cycle - acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian shield. ( Not specific to diamonds just interest)Geochimica et Cosmochimica Acta, Vol. 294. pp. 295-314. pdfCanadacarbon

Abstract: The recent expansion of studies at hydrothermal submarine vents from investigation of abiotic methane formation to include abiotic production of organics such acetate and formate, and rising interest in processes of abiotic organic synthesis on the ocean-world moons of Saturn and Jupiter, have raised interest in potential Earth analogs for investigation of prebiotic/abiotic processes to an unprecedented level. The deep continental subsurface provides an attractive target to identify analog environments where the influence of abiotic carbon cycling may be investigated, particularly in hydrogeological isolated fracture fluids where the products of chemical water-rock reactions have been less overprinted by the biogeochemical signatures of the planet’s surficial water and carbon cycles. Here we report, for the first time, a comprehensive set of concentration measurements and isotopic signatures for acetate and formate, as well as the dissolved inorganic and organic carbon pools, for saline fracture waters naturally flowing 2.4?km below surface in 2.7 billion year-old rocks on the Canadian Shield. These geologically ancient fluids at the Kidd Creek Observatory were the focus of previous investigations of fracture fluid geochemistry, microbiology and noble gas-derived residence times. Here we show the fracture waters of Kidd Creek contain high concentrations of both acetate and formate with concentrations from 1200 to 1900?µmol/L, and 480 to 1000?µmol/L, respectively. Acetate and formate alone account for more than 50-90% of the total DOC - providing a very simple "organic soup". The unusually elevated concentrations and profoundly 13C-enriched nature of the acetate and formate suggest an important role for abiotic organic synthesis in the deep carbon cycle at this hydrogeologically isolated site. A variety of potential abiotic production reactions are discussed, including a radiolytically driven H, S and C deep cycle that could provide a mechanism for sustaining deep subsurface habitability. Scientific discoveries are beginning to reveal that organic-producing reactions that would have prevailed on Earth before the rise of life, and that may persist today on planets and moons such as Enceladus, Europa and Titan, can be accessed in some specialized geologic settings on Earth that provide valuable natural analog environments for the investigation of abiotic organic chemistry outside the laboratory.
DS202110-1624
2021
Long, Z-Y., Yu, X-Y., Jiang, X., Guo, B-J., Ma, C-Y., You, Y., Zheng, Y-Y.Fluid boiling and fluid-rock interaction as primary triggers for emerald deposition: insights from the Dayakou emerald deposit ( China).Ore Geology Reviews, Vol. 139, 104454, 15p. PdfChinaemerald

Abstract: The formation of tectonic magmatic-related emerald deposits necessarily invokes a mixing model of Be-rich granitic rocks and Cr and/or V-rich surrounding rocks. However, there has been continuing debate on the deposit genesis, with the essential controversy being the relative significance of magma versus metamorphism in mineralizing as well as the key triggers for emerald deposition. The Dayakou emerald deposit genetically related to the Cretaceous granitic magmatism and hosted within the Neoproterozoic metasedimentary rocks is an ideal study case to probe into the above outstanding issue. In this paper, three hydrothermal mineralization and related alteration stages have been recognized in Dayakou, comprised of the greisenization and early emerald mineralization in high-temperature hydrothermal condition (stage-I; peak at 380 °C to 480 °C), the silicification and main emerald mineralization in medium-high temperature fluid (stage-II; peak at 300 °C to 360 °C) and the late carbonate alteration and scheelite mineralization (stage-III). Analysis results of fluid inclusion and C-H-O isotopes of emeralds and associated minerals suggest that ore-forming fluids belong to the H2O-NaCl ± CO2 system with minor H2S, CH4, and N2, exsolved from the Cretaceous granites and gradually interacted with the surrounding metamorphic rocks. We combine the new data with those reported in earlier studies to further propose a genesis scenario for the Dayakou deposit, in which Be-bearing fluids originally exsolved from peraluminous melts and fluoride complexes may be an effective transport proxy for Be in hydrothermal fluids. Fluid boiling during fluid ascent leads to the significant fractionation and enrichment of elements and the escape of volatiles (e.g., HF, H2O, CO2) in ore system. Meanwhile, sustained fluid-rock interaction (e.g., greisenization) increasingly extracts Cr, V and Ca into fluids to facilitate mineral precipitation, wherein the crystallization of fluoride minerals would cause the destabilization of Be-F complexes. Our study indicates that fluid boiling and fluid-rock interactions are the primary triggers for emerald deposition.
DS202108-1298
2021
Loparev, A., Rouby, D., Chardon, D., Dallasta, M., Sapin, F., Bajolet, P., Paquet, F.Superimposed rifting at the junction of the central and equatorial Atlantic: formation of the passive margin of the Guiana Shield.Tectonics, 10.1029/2020TC006159, 19p. PdfSouth AmericaGuiana Shield

Abstract: The continental margin of the Guiana Shield formed at the intersection of the Central and Equatorial Atlantic Oceans that developed one after the other and, in doing so, achieved the break-up of the Gondwana supercontinent. To form these Ocean, the continent crust was stretched and broke but the way this thinning is actually varying along the margin and the causes are not known so we used offshore industrial data to map it. This allows us showing that the width of the continental margin depends primarily on the direction along which the crust was thinned such that the continental margin width is much wider (200-300 km) in domains where this direction is perpendicular to the margin than in domain where it is oblique (<100 km). This also allow us showing that the continental margin resulting from the opening of the Central Atlantic Ocean is systematically wider than the one resulting from the opening of the Equatorial Atlantic. Additionally, our observations suggest that Central Atlantic Ocean opened under warmer conditions than the Equatorial Atlantic. Finally, the area at the intersection of the Central and Equatorial Atlantic Oceans, individualized a promontory of continental crust that formed the present-day Demerara Plateau.
DS202101-0023
2020
Lou, W., Zhang, D., Bayless, R.C.Review of mineral recognition and its future. AI techniquesApplied Geochemistry, Vol. 122, 104727, 10p. PdfGlobalmineralogy

Abstract: Mineral identification is a basic skill in geological studies, and is useful for characterizing rocks and tracing diagenesis and mineralization processes. Traditional methods of observation under a microscope are subject to many complex factors such as the limitations of resolution and magnification, so they are poor in qualitative analysis, and inefficient. With the expansion of geological prospecting, it is necessary to provide information for all minerals, pores and trace elements in rocks. So, mineral identification has started to rely on advanced microbeam mineral analysis techniques. This paper summarizes the common mineral analysis techniques such as Raman spectroscopy, X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Automated mineralogy (AM) systems. These microbeam technologies now approach a semi-automated analysis process, and most of these methods mainly detect the chemical composition of the mineral, rather than the mineral's optical characteristics which are the most basic properties of minerals. Therefore, this study proposes a method that can use mineral's optical features for automatic classification, mineral recognition based on convolutional neural network (CNN) and face recognition technology. The feasibility, research status and outlook of this method are also discussed. The proposed method uses convolution neural network technology to automatically extract the optical characteristics of minerals for mineral identification. Successful application of these techniques will have profound application value by reducing the cost and time needed to process and identify minerals.
DS202107-1111
2021
Lu, J., Chen, W., Ying, Y., Jiang, S., Zhao, K.Apatite texture and trace element chemistry of carbonatite-related REE deposits in China: implications for petrogenesis.Lithos, Vol. 398-399, 106276 pdfChinaREE

Abstract: Apatite is a ubiquitous mineral in carbonatites, and incorporates a variety of trace elements including rare earth elements (REEs). In this study, the textural and chemical variations of apatite were examined in order to trace the magmatic and hydrothermal petrogenesis of three carbonatite-related REE deposits: Shaxiongdong, Miaoya, and Bayan Obo. Various apatite textures were revealed by cathodoluminescence and back-scattered electron imaging. Magmatic apatite, which occurs predominantly in samples from Shaxiongdong, is euhedral, and commonly shows oscillatory or growth zonation with a yellow-green luminescent core and a violet luminescent rim. Euhedral to subhedral metasomatic apatite from Miaoya and Bayan Obo has a turbid texture, with the majority of grains associated with exsolved monazite. Hydrothermal apatite from Bayan Obo, typically occurring as aggregates in close association with fluorite and barite, is anhedral, with green or light violet luminescence. The different apatite textures are characterised by distinct trace element compositions. Magmatic apatite contains the highest concentrations of Mn (avg. 457 ppm) and Sr (avg. 18,285 ppm) and is characterised by a steeply inclined REE chondrite-normalised pattern. Metasomatic apatite, which has undergone in situ dissolution-reprecipitation, contains lower Mn (avg. 272 ppm) and Sr (avg. 9945 ppm) concentrations. It is characterised by highly variable REE trends with an La/SmN ratio varying from 0.13 to 5.61, and lower average La/YbN, La/SmN, and Sr/Y ratios (46, 2.2, and 18, respectively) than magmatic apatite. Hydrothermal apatite that was precipitated from a fluid is characterised by convex upward chondrite-normalised REE distributions with the lowest La/YbN, La/SmN, and Sr/Y ratios (13, 0.69, and 5.8, respectively). The average concentrations of Mn and Sr in this apatite are 270 and 6610 ppm, respectively. There are no Eu anomalies (Eu/Eu* = 0.97) in the chondrite-normalised REE plots for any of the analysed apatite samples. The combined textural and compositional variations of apatite in the three deposits reflect diverse magmatic and hydrothermal processes, including: 1) mineral fractionation contributing to core-rim zoning within the Shaxiongdong magmatic apatite; 2) dissolution-reprecipitation inducing monazite precipitation in Miaoya and Bayan Obo metasomatic apatite; and 3) coprecipitation with fluorite and barite from fluids generating the Bayan Obo hydrothermal apatite. A compilation of published apatite compositions from other rock types demonstrates that trace element compositions of apatite can be used to differentiate crystallisation environments and differentiate apatite from other rock types. Apatite from carbonatite has high Sr, REEs, La/YbN, Th/U, and Sr/Y, and no Eu anomaly, compared with apatite from igneous silicate rocks (except ultramafic rocks), and iron-oxide copper gold (IOCG) or iron-oxide apatite (IOA) deposits.
DS202110-1625
2021
Lu, Z., Zhao, H., Wang, Y., Fang, S., Cai, Z., Wang, Z., Ma, H-a., Chen, L., Jia, H., Jia, X.Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT conditions.Lithos, Vol. 404-405, 106470, 11p. PdfMantlediamond crystals

Abstract: The detailed phase composition and characteristics of diamond crystals grown in the metal-silicate-H2O-C system at 5.5 GPa and 1385 °C are reported in this paper. The conversion efficiency of the graphite-to-diamond in the metal-silicate-C system is lower than that in the metal-C system, which significantly decreases the growth rate of crystal. As the Mg2Si3O8•5H2O content increases to 1.5 wt%, growth pits and {110} related features of trigonal pyramids, skeletal structure, rhombic dodecahedron, and {110} dendrites exhibit in sequence. Simultaneously, the content of graphite and metal inclusions inside the crystal increases. These systematic changes are accompanied by the appearance of Csingle bondH, Csingle bondO, and Cdouble bondO bonds and a decrease of nitrogen content from ?210 ppm to ?60 ppm. It is speculated that H2O will further decompose and bond with carbon atoms and finally enter the diamond structure. The formation of Csingle bondH and Cdouble bondO bonds will terminate the extension of the three-dimensional network of Csingle bondC bonds. These defects will accumulate along the [111] direction and form {110} related characteristics. These chemical bonds also compete with the nitrogen in the system during entering into the diamond lattice. Our experimental model may provide implications for the morphology and formation environment of natural diamonds.
DS202112-1937
2021
Luo, Y.Quantifying diamond fluorescence and its visual impact.GIA Knowledge session, Dec. 16, 10 am PST utube to followGlobalflourescence
DS202101-0024
2021
Luo, Y., Korenaga, J.Efficiency of eclogite removal from continental lithosphere and its implications for cratonic diamonds. CLMGeology, in press available 5p. PdfMantlemelting

Abstract: Continental lithospheric mantle (CLM) may have been built from subducted slabs, but the apparent lack of concurrent oceanic crust in CLM, known as the mass imbalance problem, remains unresolved. Here, we present a simple dynamic model to evaluate the likelihood of losing dense eclogitized oceanic crust from CLM by gravitational instability. Our model allowed us to assess the long-term evolution of such crust removal, based on how thermal and viscosity profiles change over time across the continental lithosphere. We found that the oceanic crust incorporated early into CLM can quickly escape to the asthenosphere, whereas that incorporated after a certain age would be preserved in CLM. This study provides a plausible explanation for the mass imbalance problem posed by the oceanic ridge origin hypothesis of CLM and points to the significance of preservation bias inherent to the studies of cratonic diamonds.
DS202110-1626
2021
Luo, Y., Nelson, D., Ardon, T., Breeding, C.M.Measurement and characterization of the effects of blue fluorescence on diamond appearance. Gems & Gemology, Vol. 57, 2, summer pp. 102-123. gia.edu/gems-gemologyGlobalfluorescence
DS202111-1773
2021
Lustrino, M., Salari, G., Rahimzadeh, B., Fede;e, L. Masoudi, F., Agostini, S.Quaternary melanephelinites and melilitites from Nowbaran ( NW Urumieh-Dokhtar magmatic arc, Iran): origin of ultrabasic-ultracalcic melts in a post-collional setting.Journal of Petrology, Vol. 62, 9, pp. 1-31. pdfAsia, Iranmelilitite

Abstract: The small Quaternary volcanic district of Nowbaran (NW Iran) belongs to the Urumieh-Dokhtar Magmatic Arc, a ?1800-km long NW-SE striking Cenozoic belt characterized by the irregular but abundant presence of subduction-related igneous products. Nowbaran rocks are characterized by absence of feldspars coupled with abundance of clinopyroxene and olivine plus nepheline, melilite and other rarer phases. All the rocks show extremely low SiO2 (35.4-41.4?wt%), very high CaO (13.1-18.3?wt%) and low Al2O3 (8.6-11.6?wt%), leading to ultracalcic compositions (i.e. CaO/Al2O3?>?1). Other less peculiar, but still noteworthy, characteristics are the high MgO (8.7-13.3?wt%) and Mg# (0.70-0.75), coupled with a variable alkali content with sodic affinity (Na2O?=?1.8-5.4?wt%; K2O?=?0.2-2.3?wt%) and variably high LOI (1.9-10.4?wt%; average 4.4?wt%). Measured isotopic ratios (87Sr/86Sr?=?0.7052-0.7056; 143Nd/144Nd?=?0.51263-0.51266; 206Pb/204Pb?=?18.54-18.66; 207Pb/204Pb?=?15.66-15.68; 208Pb/204Pb?=?38.66-38.79) show small variations and plot within the literature field for the Cenozoic volcanic rocks of western Iran but tend to be displaced towards slightly higher 207Pb/204Pb. Primitive mantle-normalized multielemental patterns are intermediate between typical subduction-related melts and nephelinitic/melilititic melts emplaced in intraplate tectonic settings. The enrichment in Th, coupled with high Ba/Nb and La/Nb, troughs at Ti in primitive mantle-normalized patterns, radiogenic 87Sr/86Sr and positive ?7/4 anomalies (from +15.2 to +17.0) are consistent with the presence of (old) recycled crustal lithologies in the sources. The origin of Nowbaran magmas cannot be related to partial melting of C-H-free peridotitic mantle, nor to digestion of limestones and marls by ‘normal’ basaltic melts. Rather, we favour an origin from carbonated lithologies. Carbonated eclogite-derived melts or supercritical fluids, derived from a subducted slab, reacting with peridotite matrix, could have produced peritectic orthopyroxene- and garnet-rich metasomes at the expenses of mantle olivine and clinopyroxene. The residual melt compositions could evolve towards SiO2-undersaturated, CaO- and MgO-rich and Al2O3-poor alkaline melts. During their percolation upwards, these melts can partially freeze reacting chromatographically with portions of the upper mantle wedge, but can also mix with melts from shallower carbonated peridotite. The T-P equilibration estimates for Nowbaran magmas based on recent models on ultrabasic melt compositions are compatible with provenance from the lithosphere-asthenosphere boundary at average temperature (?1200°C?±?50°C). Mixing of melts derived from subduction-modified mantle sources with liquids devoid of any subduction imprint, passively upwelling from slab break-off tears could generate magmas with compositions recorded in Nowbaran.
DS202104-0590
2021
Lv, M., Dorfman, S.M., Badro, J., Borensztajin, S., Greenberg, E., Prakapenka, V.B.Reversal of carbonate-silicate cation exchange in cold slabs in Earth's lower mantle. Nature Communications, doi.org/10.10.1038 /s41467-021-21761-9 8p. PdfMantlediamond inclusions

Abstract: The stable forms of carbon in Earth’s deep interior control storage and fluxes of carbon through the planet over geologic time, impacting the surface climate as well as carrying records of geologic processes in the form of diamond inclusions. However, current estimates of the distribution of carbon in Earth’s mantle are uncertain, due in part to limited understanding of the fate of carbonates through subduction, the main mechanism that transports carbon from Earth’s surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCO3 throughout much of the mantle. Experiments in this study demonstrate that at deep mantle conditions MgCO3 reacts with silicates to form CaCO3. In combination with previous work indicating that CaCO3 is more stable than MgCO3 under reducing conditions of Earth’s lowermost mantle, these observations allow us to predict that the signature of surface carbon reaching Earth’s lowermost mantle may include CaCO3.
DS202112-1938
2020
Lysakovskyi, V.V., Ivakhnenko, S.O., Kvasntsya, V.M., Kovalenko, T., Burchenia, A.V. Features of morphogenesis of diamond single crystals more than 2 carats grown by temperature gradient method.Journal of Crystal Growth, Vol. 550, 12890, 6p. PdfGlobalsynthetics

Abstract: The morphology of ultra-large polyhedra of diamond grown under high pressure and high temperature (5.6-5.8 GPa and 1400-1700 °C) in a growth system based on Fe-Co was studied. The grown diamond polyhedra are crystals of an octahedral habit with minor faces of a cube, rhombic dodecahedron, and trapezohedrons {3 1 1}, {5 1 1} and {7 1 1}. The morphological features of the grown crystals are the skeletal growth of faces of various simple forms and the so-called "binary growth" of single crystal. The characteristic of these growth phenomena is given and possible reasons for their manifestation are described.
DS202112-1939
2021
Lysakovskyi, V.V., Ivakhnenko, S.O.. Kovalenko, T., Burchenia, A.V. Morphology of diamond single crystals grown in Fe-Co-Ti(Zr)-C system.Journal of Crystal Growth, Vol. 578 126422 6p. pdfRussiadiamond morphology

Abstract: The morphology of diamond single crystals grown under high pressure and high temperature (5.5 - 6.5 GPa and 1400 - 1700 °C) in the Fe-Co-Ti(Zr)-C system was studied. For growth systems based on Fe-Co doped with Ti and Zr, the sequence of change of habit types can be represented as cube-octahedron ? tetragon-trioctahedron ? octahedron. It was showed that the highest quality crystals have a tetragon-trioctahedron-octahedral habit.
DS202111-1774
2021
Ma, R-L., Chen, W.T., Zhang, W., Chen, Y-W.Hydrothermal upgrading as an important tool for the REE mineralization in the Miaoya carbonatite - syenite complex, central China.American Mineralogist, Vol. 106, pp. 1690-1703.Chinadeposit - Miaoya

Abstract: Secondary hydrothermal reworking of REEs has been widely documented in carbonatites/alkaline rocks, but its potential role in the REE mineralization associated with these rocks is currently poorly understood. This study conducted a combined textural and in situ chemical investigation on the REE mineralization in the ~430 Ma Miaoya carbonatite-syenite complex, central China. Our study shows that the REE mineralization, dated at ~220 Ma, is characterized by a close association of REE minerals (monazite and/or bastnäsite) with pervasive carbonatization overprinting the carbonatites and syenites. In these carbonatites and syenites, both the apatite and calcite, which are the dominant magmatic REE-bearing minerals, exhibit complicated internal textures that are generally composed of BSE-bright and BSE-dark domains. Under BSE imaging, the former domains are homogeneous and free of pores or mineral inclusions, whereas the latter have a high porosity and inclusions of monazite and/or bastnäsite. In situ chemical analyses show that the BSE-dark domains of the apatite and calcite have light REE concentrations and (La/Yb)N values much lower than the BSE-bright areas. These features are similar to those observed in metasomatized apatite from mineral-fluid reaction experiments, thus indicating that the BSE-dark domains formed from primary precursors (i.e., represented by the BSE-bright domains) through a fluid-aided, dissolution-reprecipitation process during which the primary light REEs are hydrothermally remobilized. New, in situ Sr-Nd isotopic results of apatite and various REE minerals, in combination with mass balance calculations, strongly suggest that the remobilized REEs are responsible for the subsequent hydrothermal REE mineralization in the Miaoya complex. Investigations of fluid inclusions show that the fluids responsible for the REE mobilization and mineralization are CO2-rich, with medium temperatures (227-340 °C) and low salinities (1.42-8.82 wt‰). Such a feature, in combination with C-O isotopic data, indicates that the causative fluids are likely co-genetic with fluids from coeval orogenic Au-Ag deposits (220-200 Ma) in the same tectonic unit. Our new findings provide strong evidence that the late hydrothermal upgrading of early cumulated REEs under certain conditions could also be an important tool for REE mineralization in carbonatites, particularly for those present in convergent belts where faults (facilitating fluid migration) and hydrothermal fluids are extensively developed.
DS202102-0204
2020
Magna, T., Viladar, S., Rapprich, V., Pour, O., Hopp, J., Cejkova, B.Nb-V enriched sovites of the northeastern and eastern part of the Amba Dongar carbonatite ring dike, India - a reflection of post-emplacement hydrothermal overprint?Geochemistry, Vol. 80, doi.org/10.1016 /j.chemer.2019 .125534 11p. PdfIndiadeposit - Amba Dongar

Abstract: Wakefieldite-(Ce,La) and vanadinite in coarse-grained calciocarbonatites (sovites) are for the first time reported from the northeastern part of the worldwide largest fluorite deposit at the Amba Dongar carbonatite ring dike, India. Sovite in this part of the carbonatite ring dike is rich in pyrochlore, calcite and magnetite. Pyrochlore makes up almost 50% of some sovite samples and shows core-to-rim compositional changes. The core of pyrochlore consists of primary fluorcalciopyrochlore with high F and Na contents while the margins gained elevated amounts of Pb, La and Ce with the associated loss of F and Na due to circulation of hydrothermal solutions. The presence of wakefieldite-(Ce,La) and vanadinite points to an exceptionally high V abundance in hydrothermal solutions formed towards the end of the carbonatite magma activity. This investigation thus opens new promising areas for Nb and REE prospection in the eastern part of the Amba Dongar carbonatite body.
DS202104-0591
2021
Malkovets, V.G., Shatsky, V.S., Dak, A.I., Gibsher, A.A., Yakovlev, I.V., Belousova, E.A., Tsujimori, T., Sobolev, N.V.Evidence for multistage and polychronous alkaline-ultrabasic Mesozoic magmatism in the area of diamondiferous placers of the Ebelyakh River basin, ( eastern slope of the Anabar shield).Doklady Earth Sciences, Vol. 496, 1, pp. 48-52.Russiadeposit - Anabar

Abstract: New mineralogical and isotope-geochemical data for zircon megacrysts (n = 48) from alluvium of Kholomolokh Creek (a tributary of the Ebelakh River) are reported. Using the geochemical classification schemes, the presence of zircons of kimberlitic and carbonatitic genesis was shown. The U-Pb dating of zircons revealed two major age populations: the Triassic (258-221 Ma, n = 18) and Jurassic (192-154 Ma, n = 30). Weighted mean 206Pb/238U ages allowed us to distinguish the following age stages: 155 ± 3, 161 ± 2, 177 ± 1.5, 183 ± 1.5, 190 ± 2, 233 ± 2.5, and 252 ± 4 Ma. It is suggested that the Ebelyakh diamonds could have been transported from the mantle depths by kimberlite, as well as by other related rocks, such as carbonatite, lamprophyre, lamproite, olivine melilitite, etc. Diamonds from the Ebelyakh placers most likely have polygenic native sources and may be associated with polychronous and multistage Middle Paleozoic and Mesozoic kimberlite and alkaline-ultrabasic magmatism in the eastern slope of the Anabar Shield (the Ebelyakh, Mayat, and Billyakh river basins).
DS202112-1940
2021
Mangana, S.A glimmer of Hope: a look at the World's most famous blue diamond.GIA Knowledge session, Nov. 18, youtube.comIndia, globalHistory - Hope diamond, famous diamond

Abstract: The Hope diamond is perhaps the most famous jewel in the world. In addition to its illustrious royal provenance, it is a rare marvel of nature due to its size, blue color and red phosphorescence. Follow Senior Manager of Diamond Identification Dr. Sally Magaña as she delves through both the history and recent scientific discoveries surrounding this gem.
DS202104-0592
2021
Manning, C.E., Frezzotti, M.L.Subduction-zone fluids. Deep fluidsElements, Vol. 16, pp. 395-400.Mantlewater

Abstract: Fluids are essential to the physical and chemical processes in subduction zones. Two types of subduction-zone fluids can be distinguished. First, shallow fluids, which are relatively dilute and water rich and that have properties that vary between subduction zones depending on the local thermal regime. Second, deep fluids, which possess higher proportions of dissolved silicate, salts and non-polar gases relative to water content, and have properties that are broadly similar in most subduction systems, regardless of the local thermal structure. We review key physical and chemical properties of fluids in two key subduction-zone contexts-along the slab top and beneath the volcanic front-to illustrate the distinct properties of shallow and deep subduction-zone fluids.
DS202107-1112
2021
Marfin, A., Radomskaya, T.A., Ivanov, A.V., Belozerova, O.Y.U-Pb dating of apatite, titanite and zircon of the Kingash mafic-ultramafic massif, Kan terrane Siberia: from Rodinia break-up to the reunion of the Siberian craton.Journal of Petrology, Vol. 62, 6, EGAb049Russia, Siberiacratons

Abstract: The initial stage of Rodinia supercontinent break-up occurred at about 750?Ma. It preceded formation of the Irkutsk and Franklin Large Igneous Provinces (LIPs)at 712 ± 2?Ma to 739 ± 8?Ma. These LIPs were emplaced within the formerly connected Laurentian and Siberian cratons. The Kingash massif is located in the Precambrian Kan terrane in direct contact with the Siberian Craton at its southwestern boundary. It has been linked to an important suite of mafic-ultramafic intrusions which border the southern margin of the Siberian craton, and which have been inferred to belong to the Irkutsk LIP. The massif is also significant, because it hosts PGE-Cu-Ni rich mineralization and is the only large deposit in the region. However, despite numerous dating attempts, the age of the massif had not been resolved. A significant difficulty is post-magmatic recrystallization at amphibolite facies that affected the rocks of the massif. In this study we used U-Pb dating of zircon, titanite and apatite from rocks of the Kingash massif and cross-cutting granite and monzonite veins. The oldest igneous zircon grain of the Kingash massif analysed by LA-ICPMS yields an age of c. 750?Ma, taken as a tentative age of magmatism. Dating of multiple grains of metamorphic zircon by CA-ID-TIMS yielded 564.8 ± 2.2?Ma, which is in agreement with LA-ICPMS titanite ages 557 ± 19?Ma, 565 ± 35?Ma and 551 ± 17?Ma. Apatite of two different samples showed ages of 496.4 ± 7.9?Ma and 497.0 ± 1.8?Ma (LA-ICPMS), which are interpreted as the time when the terrane cooled below the closure temperature of apatite. Using our new data we suggest that at the time of the Irkutsk-Franklin LIP event the Kan terrane was a part of Rodinia, then it separated from either Siberia or Laurentia during the break-up of Rodinia and finally collided with Siberia at 560?Ma; the time of regional amphibole facies metamorphism.
DS202104-0593
2021
Marshall, T., Ward, J.D., de Wit, M.C.Alluvial diamond deposits across Africa - a travelogue.Geological Society of South Africa presentation, https://www.youtube.com/watch?v=1tsWuXo6fB4&t=23sAfrica, Lesotho, Cote d'Ivoire, Democratic Republic of Congo, Tanzania, Angola, South Africa, Ghana, Mauritania, Zimbabwe, Namibia, Central African Republic, Cameroon, Swaziland, Mali, Sierra Leone, Liberia, Guineaalluvials
DS202106-0955
2020
Marshall, T.R.Evaluation of secondary diamond ( and gemstone) deposits according to SAMREC code.saimm.co.za, 6p. PdfAfrica, South Africaalluvials

Abstract: Alluvial diamond and other gemstone deposits have, typically, been exploited by small artisanal operations with little or no geological control. Over the last decade, however, alluvial deposits have become more interesting to larger (often listed), mid-tier companies wishing to benefit from the higher incomes generated by high-quality stones. The difficulties associated with evaluation and valuation of such alluvial diamond/gemstone deposits are widely known but, regrettably, often not widely understood - leading to several misconceptions over what can and cannot be expected from such deposits. Fortunately, there is a reasonably well-established body of knowledge on alluvial diamonds that has resulted in accepted industry-standard practices of how to evaluate these deposits. The 2016 version of the SAMREC Code includes several sections specific to the requirements of secondary diamond and gemstone deposits, both alluvial and marine. Consequently, it is possible to define Diamond/Gemstone Resources in accordance with the major international Committee for Mineral Reserves International Reporting Standards (CRIRSCO) type codes. This paper outlines some of the requirements and some of the pitfalls that need to be appreciated while estimating Diamond/Gemstone Resources and/or Reserves on such deposits.
DS202102-0205
2020
Martin, E.L., Spencer, C.J., Collins, W.J., Thomas, R.J., Macey, P.H., Roberts, N.M.W.The core of Rodinia formed by the juxtaposition of opposed retreating and advancing accretionary orogens.Earth-Science Reviews, Vol. 211, doi.org/10.1016 /j.earscirev.2020 .103413 17p. Pdf Globalcratons

Abstract: Long-lived (800?Ma) Paleo- to Mesoproterozoic accretionary orogens on the margins of Laurentia, Baltica, Amazonia, and Kalahari collided to form the core of the supercontinent, Rodinia. Accretionary orogens in Laurentia and Baltica record predominately radiogenic zircon ?Hf(t) and whole-rock Pb isotopic compositions, short crustal residence times (ca. 0.5?Ga), and the development of arc-backarc complexes. The accretionary orogenic record of Laurentia and Baltica is consistent with a retreating accretionary orogen and analogous to the Phanerozoic western Pacific orogenic system. In contrast, the Mesoproterozoic orogens of Amazon and Kalahari cratons record unradiogenic zircon ?Hf(t) values, ca. 0.8?Ga crustal residence times, and more ancient whole-rock Pb isotopic signatures. The accretionary orogenic record of Amazonia and Kalahari indicates the preferential incorporation of cratonic material in continental arcs of advancing accretionary orogens comparable to the Phanerozoic eastern Pacific orogenic system. Based on similarities in the geodynamic evolution of the Phanerozoic circum-Pacific orogens peripheral to Gondwana/Pangea, we suggest that the Mesoproterozoic accretionary orogens formed as peripheral subduction zones along the margin of the supercontinent Nuna (ca. 1.8-1.6?Ga). The eventual collapse of this peripheral subduction zone onto itself and closure of the external ocean around Nuna to form Rodinia is equivalent to the projected future collapse of the circum-Pacific subduction system and juxtaposition of Australia-Asia with South America. The juxtaposition of advancing and retreating accretionary orogens at the core of the supercontinent Rodinia demonstrates that supercontinent assembly can occur by the closure of external oceans and indicates that future closure of the Pacific Ocean is plausible.
DS202105-0776
2021
Martirosyan, N.S., Efthimiopoulos, I., Pennacchioni, L., Wirth, R., Jahn, S., Koch-Muller, M.Effect of catonic substitution on the pressure -induced phase transition in calcium carbonate.American Mineralogist, Vol. 106, pp. 549-558. pdfMantledeep carbon cycle
DS202106-0956
2021
Mason, E, Wieser, P.E., Liu, E.J., Edmonds, M., Ilyinskaya, E., Whitty, R.C., Mather, T.A., Elias, T., Nadeau, P.A., Wilkes, T.C., McGonigle, A.J.S., Pering, T.D., Mims, F.M., Kern, C., Schneider, D.J., Oppenheimer, C.Volatile metal emissions from volcanic gassing and lava-seawater interactions at Kilauea volcano, Hawaii.Earth & Environment Communications, 10.1038/s43247-021-00145-3 16p. PdfUnited States, Hawaiimagmatism

Abstract: Volcanoes represent one of the largest natural sources of metals to the Earth’s surface. Emissions of these metals can have important impacts on the biosphere as pollutants or nutrients. Here we use ground- and drone-based direct measurements to compare the gas and particulate chemistry of the magmatic and lava-seawater interaction (laze) plumes from the 2018 eruption of K?lauea, Hawai’i. We find that the magmatic plume contains abundant volatile metals and metalloids whereas the laze plume is further enriched in copper and seawater components, like chlorine, with volatile metals also elevated above seawater concentrations. Speciation modelling of magmatic gas mixtures highlights the importance of the S2? ligand in highly volatile metal/metalloid degassing at the magmatic vent. In contrast, volatile metal enrichments in the laze plume can be explained by affinity for chloride complexation during late-stage degassing of distal lavas, which is potentially facilitated by the HCl gas formed as seawater boils.
DS202102-0206
2020
Massonne, H-J., Li, B.Zoning of eclogitic garnet cores - a key pattern demonstrating the dominance of tectonic erosion as part of the burial process of worldwide occurring eclogites.Earth-Science Reviews, Vol. 210, doi.org/10.1016 /j.earscirev.2020. 103356 27p. Pdf MantleUHP, geodynamics

Abstract: Eclogites are witnesses of geodynamic processes that are commonly related to subduction of oceanic crust. Information on the part of these processes that refers to the burial of this rock type is rarely published but stored in the eclogitic garnet core and inclusions therein. To better understand general aspects of the burial process, a literature search on the chemical characteristics of garnet in worldwide occurrences of eclogite was undertaken. In most cases extended garnet cores show either a prograde growth zoning with increasing Mg, starting at a few percent of pyrope component, and decreasing Mn contents (type I eclogite) or a (nearly) constant chemical composition frequently with pyrope contents significantly above 10 percent (eclogites of types II and III). Only in minor cases, it is difficult to assign the reported garnet core to an eclogite type. The growth zoning of garnet was thermodynamically modelled for the chemical composition of a basalt following different burial paths. These paths are characterized either by a trajectory along a low geothermal gradient (type I eclogite), as expected for the subducting upper portion of oceanic crust, or a one characterized by nearly isothermal burial at temperatures above 500 °C reaching peak pressures up to 2.1 GPa (type III eclogite), as possibly due to crustal thickening during continent-continent collision, or more (type II eclogite) when basic rocks are tectonically eroded from the overriding continental plate before deep subduction. In addition, diffusion modelling was undertaken on mm-sized garnet demonstrating that the characteristics of the core zoning are not fully obliterated even during residence at temperatures of 800-850 °C within 10 million years. The scrutiny of more than 200 eclogites reported in the literature led to the following result: about half of them are type II eclogites; a third and a sixth can be related to type I and type III, respectively. Among type III are almost all of the few Proterozoic eclogites considered. To demonstrate the benefit of our study, we link the core zoning of eclogitic garnet from various (ultra)high-pressure terranes in Phanerozoic orogenic belts to the geodynamics shaping corresponding orogens. The eclogites in these belts are dominated by type II. Thus, we propose that some of the material of the lower portion of the overriding continental crust was tectonically eroded by a subducted oceanic plate and brought to great depth. Afterwards, this material was exhumed first in a deep subduction channel and then in an exhumation channel during continent-continent collision where a contact with the upper continental plate was re-established. Furthermore, we suggest that type II eclogite can also occur in extrusion wedges as far as oblique subduction took place.
DS202102-0207
2021
Massuyeau, M., Gardes, E., Rogerie, G., Aulbach, S., Tappe, S., Le Trong, E., Sifre, D., Gaillard, F.MAGLAB: A computing platform connecting geophysical signatures to melting processes in Earth's mantle.Physics of the Earth and Planetary Interiors, doi.org/10.1016/ j.pepi.2020.106638 51p. PdfMantlegeophysics - magnetics

Abstract: Decompression melting of the upper mantle produces magmas and volcanism at the Earth's surface. Experimental petrology demonstrates that the presence of CO2 and H2O enhances peridotite melting anywhere within the upper mantle down to approximately 200-300?km depth. The presence of mantle melts with compositions ranging from carbonate-rich to silicate-rich unavoidably affects the geophysical signals retrieved from Earth's mantle. Geochemical investigations of erupted intraplate magmas along with geophysical surveys allow for constraining the nature and volume of primary melts, and a sound formalism is required to integrate these diverse datasets into a realistic model for the upper mantle including melting processes. Here, we introduce MAGLAB, a model developed to calculate the composition and volume fraction of melts in the upper mantle, together with the corresponding electrical conductivity of partially molten mantle peridotites at realistic pressure-temperature conditions and volatile contents. We use MAGLAB to show how the compositions of intraplate magmas relate to variations in lithosphere thickness. Progressive partial melting of a homogeneous peridotitic mantle source can in theory create the diversity of compositions observed among the spectrum of intraplate magma types, with kimberlite melts beneath thick continental shields, alkaline magmas such as melilitite, nephelinite and basanite beneath thinner continents and relatively old plus thick oceanic lithospheres, and ‘regular’ basalts beneath the youngest and thinnest oceanic lithospheres as well as beneath significantly thinned continental lithospheres. MAGLAB calculations support recent experimental findings about the role of H2O in the upper mantle on producing primary kimberlitic melts in addition to CO2. We demonstrate the robustness of MAGLAB calculations by reproducing the compositions of erupted melts as well as associated mantle electrical conductivities beneath the Society hotspot in the Pacific Ocean. A comparison of our simulations with magnetotelluric surveys at various oceanic settings shows that the heterogeneities in electrical conductivity of Earth's upper mantle are related to variations in volatile content via the presence of small (generally <<1?wt%) and heterogeneously distributed fractions of CO2-H2O-bearing melts.
DS202106-0957
2021
Matende, K., Mickus, K.Magnetic and gravity investigation of kimberlites in north-central Botswana.Geophysics, Vol. 86, 2, B67-78.Africa, Botswanageophysics

Abstract: The Orapa kimberlite field of Botswana is one of the world’s major diamond producing regions. Within this field, there are several small kimberlite pipes that have not been completely explored in terms of their lateral extent, depth, and diamond potential. Two such pipes, BK54 and BK55, were found during a ground gravity and magnetic survey, and subsequent drilling confirmed the presence of kimberlite material. To determine the physical properties of these pipes, their lateral extent, depth, and thickness were estimated using a gravity and magnetic analysis and 2.5D and 3D modeling. Tilt derivatives of the magnetic data indicated that BK54 has a northwest-trending elliptical shape and BK55 has a roughly circular shape. Residual gravity anomaly maps indicate that BK54 does not have a density anomaly whereas BK55 is associated with a gravity maximum. The 3D gravity and magnetic inversion modeling constrained by magnetic susceptibility measurements indicates that BK54 is smaller in volume than BK55 and that neither pipe is thicker than 125 m. The difference in shape and the lack of a gravity anomaly over BK54 implies a different formation mechanism for each kimberlite pipe. Although several mechanisms are suggested, BK54 may have formed by a more explosive eruption producing more tuffistic material in the crater and diatreme facies. The gravity and magnetic analysis also found that the kimberlite pipes, while small, are larger in extent than was determined by drilling and warrant additional drilling to determine their economic potential.
DS202103-0393
2021
Mazzero, F.C., Rocco, I., Tucker, R.D., Morra, V., D'Antonio, M., Melluso, L.Olivine melilitites, mantle xenoliths, and xenocrysts of the Takarindiona district: petrogenesis, magmatic evolution, and the sub-continental lithospheric mantle of east-central Madagascar.Journal of African Earth Sciences, Vol. 174, 104059, 17p. PdfAfrica, Madagascarmelilitites

Abstract: The olivine melilitites from the southern part of the 6.8 Ma-old Takarindiona volcanic field (Eastern Madagascar) are olivine ± chromite -phyric lavas, with zoned titanaugite, perovskite, melilite, nepheline, monticellite, Ba-Ti-mica and Fe-Ti oxides as microphenocrysts and groundmass phases. The rocks are very primitive, rich in incompatible trace elements (e.g., Ba = 1049 ± 153 ppm, Sr = 1050 ± 167 ppm, Nb = 98 ± 13 ppm; La/Ybn = 41 ± 5; La/Nb = 0.88 ± 0.05), and have restricted ranges of initial 87Sr/86Sr (0.70391-0.70410) and 143Nd/144Nd (0.51272-0.51282). The rocks follow a differentiation trend controlled by ab. 20% removal/addition of phenocryst olivine ± chromite. The olivine melilititic magmas are the product of small degrees of partial melting (1-3%) of a peridotitic source, enriched in highly incompatible trace elements by CO2-, F-, and H2O-rich melts, located within the garnet stability field (3-3.5 GPa and ~100 km depth) of sub-continental lithospheric mantle, where carbonates (dolomite) and possibly phlogopite were stable phases. Mantle xenoliths within the volcanics are mostly spinel harzburgites having mineral modes and chemical compositions suggesting variable degrees of "basalt" melt extraction. Based on textural and chemical evidence, and quantitative thermobarometric estimates, the xenoliths were incorporated at a pressure of ~1.1 GPa (~35-40 km depth), far shallower than the source of the melilititic magmas, and along a predictably cool geotherm beneath Archean continental lithosphere. Highly resorbed orthopyroxene xenocrysts mantled by augite indicate that the melilitites may have also entrained lower crustal materials or underplated subalkaline rocks. The mantle sources of the lavas and mantle xenoliths of the Takarindiona district indicate stratification of the lithospheric mantle, and help constraining the lithospheric features and the magmatic history of the Eastern Madagascar craton.
DS202109-1480
2021
McCallum, A.The importance of luminescence.Gems & Jewelery, Vol. 30, 2, pp. 32-26.Globalluminescence
DS202102-0208
2020
McElhenny, G., Turner, M., Breeding, C.M.Corundum inclusions in gem diamond.Gems & Gemology , Vol. 56, 1, pp. 129-131.Technologydiamond inclusions

Abstract: Inclusions can tell us a great deal about a diamond’s formation history. Inclusions such as olivine, garnet, and chromite are more common, while others such as kyanite, zircon, and corundum (Al2O3) can be quite rare. Regardless of their rarity, diamond inclusions are often quite fascinating as they trap a small bit of the deep earth that cannot otherwise be sampled.
DS202110-1627
2021
McIntyre, T., Kublik, K., Currie, C., Pearson, G.Heat generation in cratonic mantle roots - new trace element constraints from mantle xenoliths. And implications for cratonic geotherms.Geochemistry, Geophysics, Geosystems, 10.1029/2021GC009691 55p. PdfAfrica, South Africa, Lesotho, Europe, Greenlandcraton

Abstract: Understanding the rate at which temperature changes with increasing depth (geothermal gradients) within ancient continental crust and its underlying mantle (cratonic lithosphere) is essential for understanding the internal structure of Earth. However, understanding geothermal gradients requires a chemical and physical understanding of deep cratonic lithosphere (up to ?200 km depth) and samples from such depths are only available as fragments hosted in melts that originate there (e.g., kimberlites). This limited sample availability of the cratonic mantle roots has resulted in some properties of this domain, used in geothermal modeling, to be poorly constrained. Here we use samples of cratonic mantle lithosphere to determine one critical and poorly constrained parameter used in modeling geothermal gradients—the heat produced from the radiogenic decay of K, U, and Th to their daughter isotopes. We measure these elements in the samples via in situ laser ablation methods to quantify their potential heat production. Comparing our results to previous estimates of heat production, our new estimates produce differences in the thicknesses of cratonic lithosphere calculated from modeled geothermal gradients by >10 km depending on the chosen lithological model. The results from this study provide an important new data set for constraining heat production in cratonic mantle peridotites.
DS202108-1299
2021
McLaughlin, N.J., Kalcheim, Y., Suceava, A., Wang, H., Schuller, I.K., Du, C.R.Quantum sensing of insulator -to-metal transitions in a Mott Insulator. NV centres in diamondsAdvanced Quantum Technologies, Vol. 4, doi.10.1002/quite.202000142, 6p. PdfGlobaldiamond morphology
DS202110-1628
2020
McManus, C.E., McMillan, N.J., Dowe, J., Bell, J.Diamonds certify themselves: multivariate statistical provenance analysis.Minerals MDPI, Vol. 10, 12p.Blank

Abstract: The country or mine of origin is an important economic and societal issue inherent in the diamond industry. Consumers increasingly want to know the provenance of their diamonds to ensure their purchase does not support inhumane working conditions. Governments around the world reduce the flow of conflict diamonds via paper certificates through the Kimberley Process, a United Nations mandate. However, certificates can be subject to fraud and do not provide a failsafe solution to stopping the flow of illicit diamonds. A solution tied to the diamonds themselves that can withstand the cutting and manufacturing process is required. Here, we show that multivariate analysis of LIBS (laser-induced breakdown spectroscopy) diamond spectra predicts the mine of origin at greater than 95% accuracy, distinguishes between natural and synthetic stones, and distinguishes between synthetic stones manufactured in different laboratories by different methods. Two types of spectral features, elemental emission peaks and emission clusters from C-N and C-C molecules, are significant in the analysis, indicating that the provenance signal is contained in the carbon structure itself rather than in inclusions.
DS202102-0209
2021
Melnik, A.E., Korolev,N.M., Skublov, S.G., Muller, D., LiL, Q-L., Li, X-H.Zircon in mantle eclogite xenoliths: a reviewGeological Magazine, https://doi.org/ 10.1017/ S0016756820001387Africa, Angola, Central African Republic, GabonKasai craton

Abstract: Very few zircon-bearing, kimberlite-hosted mantle eclogite xenoliths have been identified to date; however, the zircon they contain is crucial for our understanding of subcratonic lithospheric mantle evolution and eclogite genesis. In this study, we constrain the characteristics of zircon from mantle eclogite xenoliths based on existing mineralogical and geochemical data from zircons from different geological settings, and on the inferred origin of mantle eclogites. Given the likely origin and subsequent evolution of mantle eclogites, we infer that the xenoliths can contain zircons with magmatic, metamorphic and xenogenic (i.e. kimberlitic zircon) origins. Magmatic zircon can be inherited from low-pressure mafic oceanic crust precursors, or might form during direct crystallization of eclogites from primary mantle-derived melts at mantle pressures. Metamorphic zircon within mantle eclogites has a number of possible origins, ranging from low-pressure hydrothermal alteration of oceanic crustal protoliths to metasomatism related to kimberlite magmatism. This study outlines a possible approach for the identification of inherited magmatic zircon within subduction-related mantle eclogites as well as xenogenic kimberlitic zircon within all types of mantle eclogites. We demonstrate this approach using zircon grains from kimberlite-hosted eclogite xenoliths from the Kasai Craton, which reveals that most, if not all, of these zircons were most likely incorporated as a result of laboratory-based contamination.
DS202103-0394
2021
Merdith, A.S., Williams, S.E., Collins, A.S., Tetley, M.G., Mulder, J.A., Blades, M.L., Young, A., Armistead, S.E., Cannon, J., Zahirovic, S., Muller, R.D.Extending full plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic.Earth Science Reviews, Vol. 214, 44p. PdfMantleplate tectonics

Abstract: Recent progress in plate tectonic reconstructions has seen models move beyond the classical idea of continental drift by attempting to reconstruct the full evolving configuration of tectonic plates and plate boundaries. A particular problem for the Neoproterozoic and Cambrian is that many existing interpretations of geological and palaeomagnetic data have remained disconnected from younger, better-constrained periods in Earth history. An important test of deep time reconstructions is therefore to demonstrate the continuous kinematic viability of tectonic motions across multiple supercontinent cycles. We present, for the first time, a continuous full-plate model spanning 1 Ga to the present-day, that includes a revised and improved model for the Neoproterozoic-Cambrian (1000-520 Ma) that connects with models of the Phanerozoic, thereby opening up pre-Gondwana times for quantitative analysis and further regional refinements. In this contribution, we first summarise methodological approaches to full-plate modelling and review the existing full-plate models in order to select appropriate models that produce a single continuous model. Our model is presented in a palaeomagnetic reference frame, with a newly-derived apparent polar wander path for Gondwana from 540 to 320 Ma, and a global apparent polar wander path from 320 to 0 Ma. We stress, though while we have used palaeomagnetic data when available, the model is also geologically constrained, based on preserved data from past-plate boundaries. This study is intended as a first step in the direction of a detailed and self-consistent tectonic reconstruction for the last billion years of Earth history, and our model files are released to facilitate community development.
DS202109-1481
2021
Meredith, A.S., Williams, S.E., Collins, A.S., Tetley, M.G., Mulder, J.A., Blades, M.L., Young, A., Armistead, S.E., Cannon, J., Zahirovic, S., Muller, R.D.Extending full plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic.Earth Science Reviews , Vol. 214, 103477, 44p. PdfMantleplate tectonics, Rodinia, Gondwana

Abstract: Recent progress in plate tectonic reconstructions has seen models move beyond the classical idea of continental drift by attempting to reconstruct the full evolving configuration of tectonic plates and plate boundaries. A particular problem for the Neoproterozoic and Cambrian is that many existing interpretations of geological and palaeomagnetic data have remained disconnected from younger, better-constrained periods in Earth history. An important test of deep time reconstructions is therefore to demonstrate the continuous kinematic viability of tectonic motions across multiple supercontinent cycles. We present, for the first time, a continuous full-plate model spanning 1 Ga to the present-day, that includes a revised and improved model for the Neoproterozoic-Cambrian (1000-520 Ma) that connects with models of the Phanerozoic, thereby opening up pre-Gondwana times for quantitative analysis and further regional refinements. In this contribution, we first summarise methodological approaches to full-plate modelling and review the existing full-plate models in order to select appropriate models that produce a single continuous model. Our model is presented in a palaeomagnetic reference frame, with a newly-derived apparent polar wander path for Gondwana from 540 to 320 Ma, and a global apparent polar wander path from 320 to 0 Ma. We stress, though while we have used palaeomagnetic data when available, the model is also geologically constrained, based on preserved data from past-plate boundaries. This study is intended as a first step in the direction of a detailed and self-consistent tectonic reconstruction for the last billion years of Earth history, and our model files are released to facilitate community development.
DS202103-0395
2021
Meyer, N.Diamonds and their inclusions from the Koffiefontein pipe provide insights into the formation and evolution of the Kaapvaal craton.Vancouver Kimberlite Cluster, Feb. 24, recorded update https://www.youtube.com/ channel/UCcZvayDnqDD azIHAh1Otreg gets you into the VKCAfrica, South Africadeposit - Koffiefontein

Abstract: Diamonds and their mineral inclusions preserve mantle processes over space and time. Forming over a protracted period, diamonds also provide snapshots of early craton formation and mantle evolution over much of Earth’s history. The lithosphere beneath Koffiefontein is extremely depleted and is characterised by high-Mg# olivine and low-Ca garnet. In addition to garnet LREE enrichment, Koffiefontein experienced a unique K-Nb-Ta-rich metasomatism event that resulted in new minerals. The lack of clinopyroxene and co-existing garnet-orthopyroxene assemblages lead to the use of the electron microprobe for trace element analysis of Al in olivine. Geothermobarometry indicates that upper mantle diamond formation conditions are 1100-1300 °C and 4-7 GPa. Koffiefontein diamonds have a main ?13C mode for both peridotitic and eclogitic diamonds similar to mantle carbon. Relationships of ?15N-[N] and ?13C-?15N indicate that nitrogen was derived from subducted sources and suggests that formation of not only eclogitic but also peridotitic diamonds involved fluids derived from altered oceanic crust. Lower mantle diamonds with coexisting ferropericlase and former bridgmanite indicate formation at or below 660 km. The high bulk Mg# of this assemblage is consistent with the diamond substrate originating from the depleted lithospheric mantle portion of an oceanic slab. Diamond formation at Koffiefontein dominantly takes place in depleted peridotite at both lithospheric and lower mantle depths. The ?13C-?15N systematics suggest the same subducted source for both peridotitic and eclogitic diamonds. Subduction has played an important role in the formation and evolution of the Kaapvaal Craton and subsequent diamond formation.
DS202106-0958
2021
Mikhail, S., Rinaldi, M., Mare, E.R., Sverjensky, D.A.A genetic metasomatic link between eclogitic and peridotitc diamond inclusions.Geochemical Perspectives Letters, Vol. 17, pp. 33-38. pdfMantlediamond inclusions

Abstract: Diamond inclusions sample the otherwise inaccessible archive of Earth’s deep interior. The geochemical and petrological diversity of diamond inclusions reflects either pre-metasomatic upper mantle heterogeneity or metasomatism coeval with diamond formation. We focus on the origin of lithospheric garnet and clinopyroxene inclusions by simulating metasomatic reactions between eclogitic fluids and mantle peridotites at 5 GPa, 1000 °C, and across a range of redox conditions (logfO2?=??1 to ?6 ?FMQ). Our results demonstrate that fluid-rock interaction can result in the formation of eclogitic, websteritic, and peridotitic silicates from a single fluid during a single diamond-forming metasomatic event. Ergo, the petrogenesis of diamond and their inclusions can be syngenetic, and the petrological diversity of diamond inclusions can reflect metasomatism coeval with diamond formation. Furthermore, during the metasomatism, refractory peridotite can be converted to fertile websterite which could become a pyroxenitic mantle source for oceanic basalts.
DS202111-1775
2021
Mikhailenko, D.S., Aulbach, S., Korsakov, A.V., Golovin, A.V., Malygina, E.V., Gerdes, A., Stepanov, A.S., Xu, Y-G.Origin of graphite-diamond bearing eclogites from Udachnaya kimberlite pipe.Journal of Petrology, Vol. 62, 8, pp. 1-32. pdfRussiadeposit - Udachnaya

Abstract: Kimberlite-borne mantle eclogites represent an important diamond source rock. Although the origin and stability of diamond, as opposed to its low-pressure polymorph graphite, have been studied for decades, their relationship in rare natural samples where both polymorphs coexist remains poorly constrained. To shed new light on this issue, seven graphite-diamond-bearing eclogites from the kimberlite pipe Udachnaya, Siberian craton were comprehensively investigated with respect to their petrography, mineral chemical composition and omphacite 87Sr/86Sr, acquired in situ by laser ablation multicollector inductively coupled plasma mass spectrometry. The calculated P-T conditions for basaltic group eclogites (Eu/Eu* < 1) correspond to a pressure range of 4•8-6•5?GPa and temperatures of 1060-1130?°C, whereas gabbroic eclogites with positive Eu- and Sr-anomalies have a smaller pressure variation (4•8-5•8?GPa), but a larger range in temperature (990-1260?°C). Reconstructed bulk compositions for gabbroic eclogites indicate an oceanic crustal origin for their protoliths, with accumulation of plagioclase and olivine ± clinopyroxene (gabbronorite or olivine gabbro). The protoliths of basaltic eclogites probably formed from the complementary residual melt. The presence of coesite and low Mg# in basaltic eclogites suggest that their light rare earth element depletion was the result of <10?% partial melting during subsequent subduction and emplacement into the cratonic lithosphere. Extremely unradiogenic 87Sr/86Sr (0•70091-0•70186 for six of seven samples) not only provides new evidence for the Archean age (2•5-2•9?Gyr) of Yakutian graphite-diamond-bearing eclogites and for formation of their protoliths in a depleted mantle source, but also suggests that they were not significantly metasomatically overprinted after their formation, despite their extended residence in the cratonic mantle lithosphere. The mineralogical and petrographic features indicate that the primary mineral association includes garnet, omphacite, ± coesite, ± kyanite, ± rutile, graphite, and diamond. Graphite occurs in the samples in the form of idiomorphic crystals (the longest dimensions being 0•4-1?mm) in garnet and kyanite and extends beyond their grain boundaries. Diamonds occur as octahedral cubic transparent, slightly colored or bright yellow crystals as large as 0•1-2?mm. Furthermore, idiomorphic and highly ordered graphite occurs as inclusions in diamond in four samples. The carbon isotope composition for diamond and graphite has a narrow range (?4 to ?6•6?‰) for both groups (gabbroic and basaltic), indicating a mantle source and limiting the role of subducted isotopically light biogenic carbon or reduction of isotopically heavy carbonate in diamond crystallization. Importantly, the presence of graphite and diamond inclusions in garnet, omphacite, and kyanite in three samples indicates a co-formation close in time to eclogitization. Combined, the petrographic and geochemical evidence suggests that both polymorphic carbon modifications can form in the diamond stability field, as also suggested by experiments and some natural examples, although the exact mechanism remains unresolved. Furthermore, this study provides natural evidence that graphite can be preserved (metastably) deep within the diamond stability field, without recrystallizing into diamond, for a long time, ?2•5?Gyr.
DS202104-0594
2021
Mikhailenko, D.S., Korsakov, A.V., Ohfuji, H., Sobolev, N.V.Silicate inclusions in metamorphic diamonds from the ultra-high pressure Kokchetav complex, Kazakhstan.Doklady Earth Sciences, Vol. 496, pp. 142-145.Russia, Kazakhstandeposit - Kokchetav

Abstract: Mineral inclusions in cubic diamonds from garnet-clinopyroxene rock of the Kokchetav massif were studied. The coexistence of fluid and silicate inclusions in the central part of the diamond of the G0 sample was revealed by means of transmission electron microscopy. Silicate inclusions are represented by intergrowths of garnet and mica, which are spatially related with the carbonate and fluid inclusions. The first finding of silicate inclusions in the cubic diamonds from the UHP complex discovered over 50 years of their study is apparently due to a selective capture of the silicate minerals in the process of the diamond crystallization from the carbonate-bearing C-O-H fluid. The processes of diamond crystallization in the metamorphic deeply subducted rocks and upper mantle rocks, which are carried to the surface as xenoliths by kimberlite melts, have much in common.
DS202107-1113
2021
Miller, M.S., Zhang, P., Dahlquist, M.P., West, A.J., Becker, T.W., Harris, C.W.Inherited lithospheric structures control arc-continent collisional heterogeneity. Sunda-Banda ArcGeology Today, Vol. 49, pp. 652-656.Australia, Asiageophysics, seismics

Abstract: From west to east along the Sunda-Banda arc, convergence of the Indo-Australian plate transitions from subduction of oceanic lithosphere to arc-continent collision. This region of eastern Indonesia and Timor-Leste provides an opportunity for unraveling the processes that occur during collision between a continent and a volcanic arc, and it can be viewed as the temporal transition of this process along strike. We collected a range of complementary geological and geophysical data to place constraints on the geometry and history of arc-continent collision. Utilizing ?4 yr of new broadband seismic data, we imaged the structure of the crust through the uppermost mantle. Ambient noise tomography shows velocity anomalies along strike and across the arc that are attributed to the inherited structure of the incoming and colliding Australian plate. The pattern of anomalies at depth resembles the system of salients and embayments that is present offshore western Australia, which formed during rifting of east Gondwana. Previously identified changes in geochemistry of volcanics from Pb isotope anomalies from the inner arc islands correlate with newly identified velocity structures representing the underthrusted and subducted Indo-Australian plate. Reconstruction of uplift from river profiles from the outer arc islands suggests rapid uplift at the ends of the islands of Timor and western Sumba, which coincide with the edges of the volcanic-margin protrusions as inferred from the tomography. These findings suggest that the tectonic evolution of this region is defined by inherited structure of the Gondwana rifted continental margin of the incoming plate. Therefore, the initial template of plate structure controls orogenesis.
DS202102-0210
2021
Mints, M.V., Dokukina, K.A., Afonina, T.B.Precambrian lithosphere beneath Hudson Bay: a new geological model based on the Hudson Bay lithospheric experiment ( HuBLE), Canadian shield.Tectonophysics, Vol. 799, 15p. Doi.org/10.1016/ j.tecto.2020.228701Canada, Ontario, Quebectomography

Abstract: The oval-shaped basin of Hudson Bay occurs near the center of the round-oval Archaean crustal domain of the North American continent. This paper presents models of the geological structure and evolution of the subcontinental lithospheric mantle underlying Hudson Bay and surrounding tectonic provinces based on geological interpretations of regional geological and geophysical data and results of seismic tomography investigations that have been conducted under the Hudson Bay Lithospheric Experiment. The experiment was aimed at lithospheric processes directly related to the origin of the North American craton and the Hudson Bay basin. Hudson Bay is located directly above the lithospheric keel of North America. The geological history demonstrates systematic "renovation" of the basin: (1) origin and evolution of the Neoarchaean Lake Minto basin (~2.75 Ga); (2) accumulation of the Palaeoproterozoic volcanic-sedimentary filling of the epicontinental basin, relics of which is preserved on its passive margins (2.03-1.87 Ga); (3) origin of Ordovician-Late Devonian sedimentary sequence whose maximum thickness reaches 2.5 km; and (4) the development of Late Jurassic-Miocene sediment-filled ring-shaped trough immediately above the lithospheric keel. The Hudson Bay basin occurs above the lithospheric keel in compliance with thermomechanical model of ascending plume. Tomography studies have not detected evidence of either production or transformation of the lithosphere in the Palaeoproterozoic, which are implied by the model of the United Plates of America. Interpretations of tomography data reveal a vertical axial zone in the lithosphere beneath Hudson Bay, which extends from the lithosphere-asthenosphere boundary to the base of the crust or, perhaps, even to the present day surface. The zone is made up of relatively light low-velocity igneous rocks, probably a swarm of kimberlite dikes or pipes. At 2.75 Ga, the North American continent was a single continental mass with Hudson Bay at its center.
DS202106-0959
2021
Mitchell, R.H.Comment on Vladykin, N.V. & Piranjo, F. -Types of carbonatites; geochemistry, genesis and mantle sources.Lithos, Vol 386-387, 105982 3p. PdfGlobalcarbonatites
DS202104-0595
2021
Mitchell, R.H., Dawson, J.B.Mineralogy of volcanic calciocarbonatites from the Trig Point Hill debris flow, Kerimasi volcano, Tanzania: implications for the altered natrocarbonatite hypothesis.Mineralogical Magazine, 12p. PdfAfrica, Tanzaniadeposit - Trig Point Hill

Abstract: A major debris flow, the Trig Point Hill flow, originating from Kerimasi volcano (Tanzania) contains numerous blocks of extrusive/pyroclastic carbonatites similar to those exposed at the rim of the currently inactive crater. The blocks of calcite carbonatite consist of: (1) large clasts of corroded and altered coarse grained calcite; (2) primary prismatic inclusion bearing phenocrystal calcite; and (3) a matrix consisting primarily of fine-grained prismatic calcite. The large clasts are inclusion free and exhibit a ‘corduroy-like’ texture resulting from solution along cleavage planes. The resulting voids are filled by brown Fe-Mn hydroxides/oxides and secondary calcite. The prismatic or lath-shaped phenocrystal calcite is not altered and contains melt inclusions consisting principally of primary Na-Ca carbonates which contain earlier-formed crystals of monticellite, periclase, apatite, Mn-Mg-magnetite, Mn-Fe-sphalerite and Nb-perovskite. Individual Na-Ca carbonate inclusions are of uniform composition, and the overall range of all inclusions analysed (wt.%) is from 28.7 to 35.9 CaO; 16.7-23.6 Na2O; 0.5-2.8 K2O, with minor SO3 (1.1-2.2) and SrO (0.34-1.0). The Na-Ca carbonate compositions are similar to that of shortite, although this phase is not present. The Na-Ca carbonates are considered to be primary deuteric phases and not secondary minerals formed after nyerereite. Monticellite shows limited compositional variation and contains 2-4 wt.% MnO and 12 wt.% FeO and is Mn-poor relative to monticellite in Oldoinyo Lengai natrocarbonatite. Periclase is Fe-bearing with up to 13 wt.% FeO. Spinels are Cr-free, Mn-poor and belong to the magnetite-magnesioferrite series in contrast to Mn-rich spinels of the magnetite-jacobsite series occurring in Oldoinyo Lengai natrocarbonatite. The matrix in which the ‘corduroy’ clasts and phenocrystal calcite are set consists of closely packed small prisms of calcite lacking melt inclusions, with interstitial fine-grained apatite, baryte, strontianite and minor fluorite. Pore spaces are filled with secondary Mn-Fe hydroxides/oxides, anhydrite and gypsum. The hypothesis that flow-aligned calcite in volcanic calciocarbonatites from Kerimasi, Tinderet, Homa and Catanda is altered nyerereite is discussed and it is considered that these calcite are either primary phases or altered melilite. The nyerereite alteration hypothesis is discussed with respect to the volumetric and compositional aspects of pseudomorphism by dissolution-precipitation replacement mechanisms. This study concludes that none of the volcanic calciocarbonatites containing flow-aligned calcite phenocrysts are altered natrocarbonatite.
DS202109-1482
2021
Mitchell, R.H., Dawson, J.b.Mineralogy of volcanic calciocarbonatites from the Trig Point Hill debris flow, Kerimasi volcano, Tanzania: implications for the altered natrocarbonatite hypothesis.Mineralogical Magazine, Vol. 85, 4, pp. 484-495.Africa, Tanzaniadeposit - Trig Point Hill

Abstract: Abstract A major debris flow, the Trig Point Hill flow, originating from Kerimasi volcano (Tanzania) contains numerous blocks of extrusive/pyroclastic carbonatites similar to those exposed at the rim of the currently inactive crater. The blocks of calcite carbonatite consist of: (1) large clasts of corroded and altered coarse grained calcite; (2) primary prismatic inclusion bearing phenocrystal calcite; and (3) a matrix consisting primarily of fine-grained prismatic calcite. The large clasts are inclusion free and exhibit a ‘corduroy-like’ texture resulting from solution along cleavage planes. The resulting voids are filled by brown Fe-Mn hydroxides/oxides and secondary calcite. The prismatic or lath-shaped phenocrystal calcite is not altered and contains melt inclusions consisting principally of primary Na-Ca carbonates which contain earlier-formed crystals of monticellite, periclase, apatite, Mn-Mg-magnetite, Mn-Fe-sphalerite and Nb-perovskite. Individual Na-Ca carbonate inclusions are of uniform composition, and the overall range of all inclusions analysed (wt.%) is from 28.7 to 35.9 CaO; 16.7-23.6 Na2O; 0.5-2.8 K2O, with minor SO3 (1.1-2.2) and SrO (0.34-1.0). The Na-Ca carbonate compositions are similar to that of shortite, although this phase is not present. The Na-Ca carbonates are considered to be primary deuteric phases and not secondary minerals formed after nyerereite. Monticellite shows limited compositional variation and contains 2-4 wt.% MnO and 12 wt.% FeO and is Mn-poor relative to monticellite in Oldoinyo Lengai natrocarbonatite. Periclase is Fe-bearing with up to 13 wt.% FeO. Spinels are Cr-free, Mn-poor and belong to the magnetite-magnesioferrite series in contrast to Mn-rich spinels of the magnetite-jacobsite series occurring in Oldoinyo Lengai natrocarbonatite. The matrix in which the ‘corduroy’ clasts and phenocrystal calcite are set consists of closely packed small prisms of calcite lacking melt inclusions, with interstitial fine-grained apatite, baryte, strontianite and minor fluorite. Pore spaces are filled with secondary Mn-Fe hydroxides/oxides, anhydrite and gypsum. The hypothesis that flow-aligned calcite in volcanic calciocarbonatites from Kerimasi, Tinderet, Homa and Catanda is altered nyerereite is discussed and it is considered that these calcite are either primary phases or altered melilite. The nyerereite alteration hypothesis is discussed with respect to the volumetric and compositional aspects of pseudomorphism by dissolution-precipitation replacement mechanisms. This study concludes that none of the volcanic calciocarbonatites containing flow-aligned calcite phenocrysts are altered natrocarbonatite.
DS202105-0777
2021
Modise, E.G., Zungeru, M.A., Chuma, J.M., Prabaharan, S.R.S., Mtengi, B., Ude, A., Nedev, Z.The new paradox of dual modality x-ray diamond sorting.IEEE Photonics Journal, Researchgate 35102286, April, 28p. PdfGloballuminescence

Abstract: Modern-day diamond sorting is achieved through the application of x-ray luminescence (XRL) and x-ray transmission (XRT) techniques. Sorting with XRL is limited to the class range of 1.25mm to 32mm because of self-absorption associated with larger diamonds, greater than 32mm. The effect of self-absorption is also a high-energy phenomenon in XRL. XRT is limited to sorting large size diamonds as the technique suffers poor contrast for diamonds smaller than 10mm. XRT measurements are immune to self-absorption for all sample sizes, while XRL measurements have good contrast for particles smaller than 32mm. The applications of these techniques have hitherto been used independently of each other and have subsequently progressed mutually exclusively. Here we analytically show a new paradox of a dual-modality X-ray diamond sorting combining XRL and XRT techniques' strengths. Key features of our new paradoxical model performance are contrast mitigation for small particles and self-absorption rejection for a large particle at high energy as well as improved particle detectability and classification.
DS202106-0960
2021
Mohammed, A. Al Deep, M.Depth to the bottom of the magnetic layer, crustal thickness, and heat flow in Africa: inferences from gravity and magnetic data.Journal of African Earth Sciences, Vol. 179, 104204, 17p. PdfAfricaEMAG2

Abstract: Data from the Earth Gravitational Model (EGM2008) and the Earth Magnetic Anomaly Grid (EMAG2) were used to develop a continental scale crustal thickness model for Africa, and to estimate the depth to the bottom of the magnetic layer (DBML) and the geothermal gradient and heat flow. The results are: (1) the estimated DBML from the magnetic data varies from ~23.0 to ~37.2 km. The shallowest DBML values are located in the northern, eastern, and western parts of the continent, whereas the deepest values are observed in the central and southern regions. (2) The estimated crustal thickness based on gravity data varies from ~29.9 km in the northern and western parts of Africa to ~48.0 km in its southern regions, with an average thickness of 35.1 km for the whole continent. (3) The estimated heat flow varies between high values of 46-59 mW/m2, observed in the northern, eastern, and western regions to low values of ~< 41 mW/m2, observed in the central and southern parts of the continent. (4) The geothermal gradient values vary between 14.5 and 23.6 °C/km (5) The East African rift zone is underlain by shallow DBML characterized by high heat flow values that vary between 42 and 59 mW/m2 (6) The heat flow anomalies in Egypt and Libya may be associated with the zone of the Pelusium megashear system, and it shows heat flow values that vary between 36.3 and 59.0 mW/m2. The current study has taken advantage of the availability of the EGM2008 and EMAG2 datasets to map crustal thickness variations and DBML beneath the continental landmass of Africa.
DS202107-1114
2021
Moore, A. E.Falconbridge discovery of the Gope (Go25) (Ghaghoo) kimberlite.researchgate.com, 8p. Pdf June 2021Africa, Botswanadeposit - Gope, Ghaghoo
DS202109-1483
2021
Moore, A., Costin, G., Proyer, A.Cognate versus xenocrystic olivines in kimberlites - a review.Earth Science Reviews , 103771 75p. PdfAfrica, South Africadeposit - Monastery

Abstract: Models for a xenocryst origin for kimberlite olivines emphasise the similarity between their core compositions and those in mantle peridotites. While this permits a xenocryst origin, it does not provide proof, as magmas generated in equilibrium with mantle olivines could, in principle, crystallize initial olivines matching those in the source region. Further, in several kimberlites, there is a striking disparity between the compositional range of olivine cores and that in associated mantle peridotite xenoliths from the same locality. Olivine-liquid Mg-Fe exchange coefficients and Ni partition coefficients permit equilibrium between Mg-rich mantle olivines (Mg#?~?94-93) and magmas matching kimberlite bulk rock compositions. Glass inclusions in olivine megacrysts from the Monastery kimberlite, with compositions which overlap the range of archetypal Group I kimberlites, were interpreted to represent original liquids trapped at pressures of 4.5-6?GPa. These glass inclusions provide direct petrographic support for primitive melts matching kimberlite bulk chemistry in the lower SCLM. A majority of kimberlitic olivines show normal (decreasing Mg#) core to rim zonation. Cores of normal-zoned kimberlitic olivines are typically homogeneous, but collectively define a field with a range in Mg # and invariant or slightly decreasing Ni towards more Fe-rich compositions. The most Mg-rich cores of normal-zoned olivines typically have Mg# in the range 94-93, but there are marked differences in the Fe-rich extreme of the normal-zoned population between different kimberlite clusters. Olivine rims typically define a field characterized by steeply decreasing Ni, coupled with invariant or slightly increasing or decreasing Mg#, which invariably overlaps the Fe-extreme of core compositions of the relatively Mg-rich, normal-zoned olivines. Consequently, while there is a sharp inflection in chemical gradient between the respective fields of cores and rims, they nevertheless define a continuous compositional field. Trace element modelling demonstrates that these zonation patterns can be explained in terms of a Raleigh crystallization model. Most, if not all kimberlites are characterized by a subordinate group of olivine macrocrysts with cores that are Fe-rich relative to the field for rims, and thus show reverse zonation, which are interpreted to be linked to the Cr-poor megacryst suite. Rare Mg-rich olivines (relative to rims), have high-pressure inclusions of garnet, clinopyroxene and orthopyroxene. When present, such inclusions often show disequilibrium features such as internal chemical zonation. This points to a very short mantle residence time prior to entrainment by the host kimberlite, indicating a link to the Cr-rich megacryst suite rather than mantle peridotites. In addition to a variable, but generally subordinate proportion of olivines derived from Cr-poor and Cr-rich megacrysts, xenocrysts derived from disaggregated mantle peridotites will undoubtedly be present. While their proportions are difficult to quantify, the collective evidence points to a cognate origin for a majority of kimberlitic olivines. A kimberlite magma ascent model is proposed which provides a framework for understanding both olivine compositional variation and apparently enigmatic internal and external olivine morphology.
DS202111-1776
2021
Morozov, V.V., Dvoichenkova, G.P., Kovalenko, E.G., Chanturia, E.L., Chernysheva, E.N.The mechanism and parameters of froth flotation stimulation for diamond-bearing materials by thermal and electrochemical effects.Journal of Mining Science, Vol. 57, 2, pp. 286-297. pdfRussiaIPKON RAS

Abstract: The thermodynamic analysis and tests of minerogenesis under higher temperatures determine conditions of thermochemical decomposition of hydrophilic attachments on diamond surface. It is found that hydrophilic mineral attachments can be removed from diamond surface by combining thermal treatment of slurry at the temperature of 80-85 ?C with electrochemical treatment of recirculated water, which enables required change in ion-molecule composition of water phase in the slurry. The hybrid conditioning technology ensures recovery of the natural hydrophobic behavior and floatability of diamonds and enhances performance of froth flotation of diamonds by 5.1%.
DS202110-1629
2021
Muavhi, N., Tessema, A.Application of ground magnetic and soil geochemical surveys for mapping potential kimberlite bodies in the southern margin of the Archean Kaapvaal craton, South Africa.Journal of Geochemical Exploration, Vol. 23, 13p. PdfAfrica, South Africageophysics - magnetics

Abstract: In this study, the southern margin of the Archean Kaapvaal Craton in South Africa is selected to investigate the occurrences of potential kimberlite bodies. Ground magnetic survey was conducted to identify potential targets for further exploration. Euler 3D deconvolution and Keating correlation coefficients are the processing techniques that were applied to the ground magnetic data to identify geological features that correspond to kimberlite models. These techniques revealed several potential targets that resemble geologic models of kimberlite bodies. Seven of these targets (Targets A, B, C, D, E, F and G), spatially cluster along or at the intersections of linear structures, which is consistent with one of the primary geological conditions that control the emplacement of kimberlite bodies. A follow-up soil sampling and analysis was conducted to assess the geochemistry of soils at the seven targets. The major element geochemistry of soil samples suggest that Target B possesses residual soils that originated from kimberlite intrusion, while the remaining six samples show geochemical characteristics of soils derived from crustal rocks. The composition of compatible (Ni, Cr, V, Co, Cu and Zn) and incompatible (Nb, Zr, Sr, Ce, and Ba) trace elements of Target B shows similarity with the known Group 1 Kimberlites locally and globally, thus confirming that Target B most probably belongs to Group 1 Kimberlite petrological clan. This, however, does not preclude the possibility of modification of kimberlite chemistry by crustal assimilation during ascent and post-emplacement processes such as weathering as demonstrated by elevated concentrations of SiO2, Al2O3 and Rb and low content of MgO. In light of this, Target B may be interpreted as a potentially contaminated and weathered Group 1 Kimberlite pipe which intruded the Karoo Supergroup at the intersection of linear structures. This finding is consistent with the presence of large number of known diamondiferous kimberlites in this region, which post-date the formation of the Karoo Supergroup.
DS202107-1115
2021
Mukerjee, A., Tiwari, P., Verma, C.B., Babu, E.V.S.S.K., Sarathi, J.P.Native gold and Au-Pt alloy in eclogite xenoltihs of Kalyandurg KL-2 kimberlite, Anantapur district, South India.Journal of the Geological Society of India, Vol. 97, pp. 567-570.Indiadeposit - Kalyandurg

Abstract: The paper pertains to the studies carried out on the eclogitic xenoliths of KL-2 kimberlite of Kalyandurg kimberlite cluster in south India. Petrographic studies revealed bi-mineralic and kyanite-bearing eclogitic xenoliths in KL-2 kimberlite. The bimineralic and kyanite-bearing eclogites of Kalyandurg KL-2 kimberlite pipe show variation in modal proportion of garnet, omphacite, clinopyroxene and kyanite. The paper reports discovery of native gold grains and Au-Pt alloy in the kyanite-bearing eclogite xenoliths of KL-2 kimberlite. The flaky gold grains occurring in the matrix of kyanite-bearing eclogite are homogeneous and two grains of Au-Pt alloy with Au and Pt in the proportion of 9.8:1.2 are also present. This is the first report of gold and gold-platinum alloy specs from eclogitic xenoliths of Indian kimberlites.
DS202111-1777
2021
Mulder, J.A., Nevel, O., Gardiner, N.J., Cawood, P.A., Wainwright, A.N., Ivanic, T.J.Crustal rejuvenation stabilised Earth's first cratons.Nature Communications, Vol. 12, 3535, 8p. pdfMantlecraton

Abstract: The formation of stable, evolved (silica-rich) crust was essential in constructing Earth’s first cratons, the ancient nuclei of continents. Eoarchaean (4000-3600 million years ago, Ma) evolved crust occurs on most continents, yet evidence for older, Hadean evolved crust is mostly limited to rare Hadean zircons recycled into younger rocks. Resolving why the preserved volume of evolved crust increased in the Eoarchaean is key to understanding how the first cratons stabilised. Here we report new zircon uranium-lead and hafnium isotope data from the Yilgarn Craton, Australia, which provides an extensive record of Hadean-Eoarchaean evolved magmatism. These data reveal that the first stable, evolved rocks in the Yilgarn Craton formed during an influx of juvenile (recently extracted from the mantle) magmatic source material into the craton. The concurrent shift to juvenile sources and onset of crustal preservation links craton stabilisation to the accumulation of enduring rafts of buoyant, melt-depleted mantle.
DS202105-0778
2021
Muruganathan, M., Mizuta, H.Boron vacancy color center in diamond: An initio study.Diamond & Related Materials, Vol. 114, 108341 6p. PdfGlobaldiamond colours

Abstract: The color centers in diamond are crucial for emerging single-photon sources, quantum technologies, and biological sensors. Even though boron is commonly used as a dopant for diamond, its functionality as a vacancy color center depends on the capability to excite electrons optically between the well-defined gap states. Here we show by using density functional theory calculations that the negatively charged boron-vacancy (BV?1) center in diamond possesses such well-isolated gap states and enables the spin-conserved triplet excitation. Formation energy of different charge states of boron vacancy center is calculated by including the corrections of electrostatic interactions between the periodic images of the charged defects and the defect-induced bands shift. Wavefunctions of diamond BV?1 center defect states are elucidated and its zero phonon line is calculated as 3.22 eV. These characteristics manifest that the BV?1 center can be harnessed as an alternative promising color center for diamonds.
DS202107-1116
2020
Myshenkova, M.S., Zaitsev, V.A., Thomson, S., Latyshev, A.V., Zakharov, V.S., Bagdasaryan, T.E., Veselovsky, R.E.Thermal history of the Guli Pluton ( north of the Siberian platform) according to apatite fission-track dating and computer modeling. (carbonatite)Geodynamics & Tectonophysics, Vol. 11, pp. 75-87. pdfRussia, Siberiageothermometry

Abstract: We present the first results of fission-track dating of apatite monofractions from two rock samples taken from the Southern carbonatite massif of the world’s largest alkaline ultrabasic Guli pluton (~250 Ma), located within the Maymecha-Kotuy region of the Siberain Traps. Based on the apatite fission-track data and computer modeling, we propose two alternative model of the Guli pluton's tectonothermal history. The models suggest (1) rapid post-magmatic cooling of the studied rocks in hypabyssal conditions at depth about 1.5 km, or (2) their burial under a 2-3 km thick volcano-sedimentary cover and reheating above 110°C, followed by uplift and exhumation ca. 218 Ma.
DS202111-1778
2021
Nadolinny, V.A., Komarovskikh, A.Yu., Rakhmanova, M.I.,Yuryeva, O.P., Shatsky, V.S., Palyanov, Yu.N. Guskova, M.I.New data on the N1 nitrogen paramagnetic center in brownish type IaAB diamonds from Mir pipe.Diamond and Related Materials, Vol. 120, 108638 6p. PdfRussiadeposit - Mir

Abstract: In this work, two brownish crystals from the Mir pipe attributed to type IaAB have been examined by a complex of spectroscopic methods: electron paramagnetic resonance, infrared, and photoluminescence spectroscopies. A combination of features such as brownish color, optical system 490.7 nm, and paramagnetic centers W7 and 490.7 points out to plastic deformation of the crystals. The W7 is known to be formed as a result of destruction of A-aggregates during plastic deformation while part of the N3V centrers can be formed due to the disruption of the B-aggregates. The narrow-line EPR spectra from the nitrogen-related N3V centers and the P1 centers indicate that the crystals were annealed after plastic deformation. Another feature of the crystals studied is the observation of the well-known paramagnetic N1 center with only two magnetically inequivalent positions (i.e. with two magnetically inequivalent directions of the C1-N1 fragments) instead of the previously reported four. Possible transformation pathways of the W7 center (N1-C1-C2-N2+) into the N1 center (N1-C-N2+) during the post-deformation annealing are considered.
DS202107-1117
2021
Nakanishi, N., Giuliani, A., Carlson, R.W., Horan, M.F., Woodhead, J., Pearson, D.G., Walker, R.J.Tungsten-182 evidence for an ancient kimberlite source.PNAS, Vol. 118, no. 23, doi.org/10.1073/pnas .e2020680118 8p. PdfMantledeep source, genesis

Abstract: Globally distributed kimberlites with broadly chondritic initial 143Nd-176Hf isotopic systematics may be derived from a chemically homogenous, relatively primitive mantle source that remained isolated from the convecting mantle for much of the Earth’s history. To assess whether this putative reservoir may have preserved remnants of an early Earth process, we report 182W/184W and 142Nd/144Nd data for "primitive" kimberlites from 10 localities worldwide, ranging in age from 1,153 to 89 Ma. Most are characterized by homogeneous ?182W and ?142Nd values averaging ?5.9 ± 3.6 ppm (2SD, n = 13) and +2.7 ± 2.9 ppm (2SD, n = 6), respectively. The remarkably uniform yet modestly negative ?182W values, coupled with chondritic to slightly suprachondritic initial 143Nd/144Nd and 176Hf/177Hf ratios over a span of nearly 1,000 Mya, provides permissive evidence that these kimberlites were derived from one or more long-lived, early formed mantle reservoirs. Possible causes for negative ?182W values among these kimberlites include the transfer of W with low ?182W from the core to the mantle source reservoir(s), creation of the source reservoir(s) as a result of early silicate fractionation, or an overabundance of late-accreted materials in the source reservoir(s). By contrast, two younger kimberlites emplaced at 72 and 52 Ma and characterized by distinctly subchondritic initial 176Hf/177Hf and 143Nd/144Nd have ?182W values consistent with the modern upper mantle. These isotopic compositions may reflect contamination of the ancient kimberlite source by recycled crustal components with ?182W ? 0.
DS202108-1300
2021
Narvekar, P., Even Zohar, C.2020 diamond pipeline: pandemic- blessing in disguise for the industry?Idexonline.com, 2020Diamond PipelineBy PranayNarvekar AndChaimEvenZohar.pdf 15p. Globaldiamond pipeline

Abstract: 2020 always had a nice ring to it and in the runup to it, many entities, both companies and international bodies drew up their vision statements for Twenty-Twenty. However, 2020 turned out to be quite the contrary and will be remembered for a long time for all the wrong reasons. The Covid-19 pandemic and the resulting actions taken to tackle the same had an indelible impact on the way we live and work, while proving to be a shock to the entire global financial and economic system. The world economy as well as the diamond pipeline faced a sudden stop around March 2020, as the Covid-19 infections spread, and governments-imposed lockdowns of various types. However, the recovery seemed to be equally quick at least for the industry, though not simultaneously in all geographies. In most retail markets, sales seemed to match those of the previous year within about 4-6 months, and in some cases continued to grow from strength to strength. In the mining areas Covid challenges impacted production and distribution, causing additional pipeline incongruities. It is instructive to take a quick look at how the U.S. retail sales for the industry rebounded. U.S. accounts for half of the industry sales and the retail market bounced back quickly and continued its stellar performance even into 2021. The one thing that didn’t bounce in the United States were the 169 million stimulus checks, totaling $395billion, which the IRS has sent out to U.S. taxpayers whether they needed it or not. The new Biden administration passed already the American Rescue Plan Act of 2021 providing $1.9 trillion in funding, program changes and tax policies to help mitigate the effects of the pandemic, which means that the bonanza in the U.S. retail markets will solidly continue throughout the current year, irrespective of any Covid-variant.
DS202106-0961
2021
Nathan, E.M., Hariharan, A., Florez, D., Fischer, K.M.Multi-layer seismic anisotropy beneath Greenland.Geochemistry, Geophysics, Geosystems, 10.1029/2020G C009512 17p. PdfEurope, Greenlandgeophysics - seismic

Abstract: Measurements of seismic anisotropy (the direction-dependent variation in seismic wavespeed) provide useful information about the orientation of deformation in the Earth. We measured seismic anisotropy using shear waves refracted through the outer core and recorded by stations in Greenland. Due to new stations and data, this study includes more measurements of the effects of anisotropy than previously possible. We show that a model with two layers of anisotropy explains dominant patterns in the fast vibration direction of the shear waves as a function of the angle at which they approach each station. We suggest that the shallow layer reflects coherent deformation in the continental lithosphere of Greenland due to its history of plate collisions and that the lower layer reflects deformation in the asthenospheric mantle induced by the motion of the plate above or a second layer of lithospheric anisotropy.
DS202103-0396
2021
Neil, B.J.C., Gibson, H.D., Pehrsson, S.J., Martel, E., Thiessen, E.J., Crowley, J.L.Provenance, stratigraphic and precise depositional age constraints for an outlier of the 1.9 to 1.8 Ga Nonacho Group, Rae craton, Northwest Territories, Canada.Precambrian Research, Vol. 352, 105999, 15p. PdfCanada, Northwest Territoriesgeochronology

Abstract: The Nonacho Group comprises six formations of continental clastic rocks that were deposited between 1.91 and 1.83?Ga. The Nonacho Group is part of a broader assemblage of conglomerate and sandstone that was deposited atop the Rae craton in response to the amalgamation of Laurentia and supercontinent Nuna, but the details of its tectonic setting are contentious. This paper documents an outlier of Nonacho Group rocks ?50?km east of the main Nonacho basin. Field observations and LA-ICPMS (laser ablation inductively coupled plasma mass spectrometry) U-Pb detrital zircon geochronology are integrated with previous studies of the main basin to better understand the group’s depositional history, provenance and tectonic setting. The lithology and detrital zircon age spectra of the outlier allow for its correlation to the upper two formations of the Nonacho Group. CA-ID-TIMS (chemical abrasion isotope dilution thermal ionization mass spectrometry) analyses of two fragments of the youngest detrital zircon provide a maximum depositional age of 1901.0?±?0.9?Ma. A felsic volcanic cobble dated at ca. 2.38?Ga provides evidence of volcanism during the Arrowsmith orogeny. Detrital zircon dates recovered from the outlier (ca. 3.4-3.0, 2.7, 2.5-2.3 and 2.0-1.9?Ga) are consistent with derivation from topography of the Taltson and/or Thelon orogens on the western margin of the Rae craton. Taltson-Thelon (2.0 to 1.9?Ga) aged detritus is only abundant in the upper two formations of the Nonacho Group, marking a change in provenance from the lower formations. This change in provenance may have coincided with a period of renewed uplift and the unroofing of Taltson-Thelon plutons. The detrital zircon provenance and depositional age of the Nonacho Group is consistent with models that link its deposition to the Taltson and/or Thelon orogens. However, tectonism associated with the 1.9 to 1.8?Ga Snowbird and Trans-Hudson orogens to the east could also have affected basin formation or the change in provenance from the lower to upper Nonacho Group. This study highlights the importance of CA-ID-TIMS in establishing accurate and precise maximum depositional ages for sedimentary successions.
DS202102-0211
2020
Nemeth, P., McColl, K., Smith, R., Murri, M.Diamond-Graphene composite nanostructures.Nano Letters, doi.10.1021/acs/ nanolett.Oc0556 10p. PdfGlobalnanodiamond

Abstract: The search for new nanostructural topologies composed of elemental carbon is driven by technological opportunities as well as the need to understand the structure and evolution of carbon materials formed by planetary shock impact events and in laboratory syntheses. We describe two new families of diamond-graphene (diaphite) phases constructed from layered and bonded sp3 and sp2 nanostructural units and provide a framework for classifying the members of this new class of materials. The nanocomposite structures are identified within both natural impact diamonds and laboratory-shocked samples and possess diffraction features that have previously been assigned to lonsdaleite and postgraphite phases. The diaphite nanocomposites represent a new class of high-performance carbon materials that are predicted to combine the superhard qualities of diamond with high fracture toughness and ductility enabled by the graphitic units and the atomically defined interfaces between the sp3- and sp2-bonded nanodomains.
DS202106-0962
2021
Nestola, F.How to apply elastic geobarometry in geology.American Mineralogist, Vol. 106, pp. 669-671. pdfGlobalgeobarometry

Abstract: Pressure and temperature estimates of rocks provide the fundamental data for the investigation of many geological processes such as subduction and exhumation, and yet their determination remains extremely challenging (Tajcmanova et al. 2020). A wide variety of methods are constantly being developed to tackle the ambitious objective of pinpointing the geological history of rocks through the many complex processes often interacting with one another at depth in our planet. Analytical advances are being pushed to the limit of conventional methods, allowing information preserved by mineral, fluid, and solid inclusions to be used for high spatial resolution determinations that can unravel a large variety of processes occurring at the micro- to the nano-scale. Among these, chemical geothermobarometry that is often challenging in many rock types due to alteration processes, chemical re-equilibration, diffusion, and kinetic limitations has been increasingly coupled with elastic geothermobarometry (e.g., Anzolini et al. 2019; Gonzalez et al. 2019). Elastic geothermobarometry of host-inclusion systems, in paper Mazzucchelli et al. 2021, this issue, is a new and complementary non-destructive method (see Fig. 1 for an example) to determine the pressures (P) and temperatures (T) of inclusion entrapment (i.e., the P-T conditions attained by rocks and minerals at depth in the Earth) from the remnant stress or strain measured in inclusions still trapped in their host mineral at room conditions (e.g., Nestola et al. 2011; Howell et al. 2012; Alvaro et al. 2020).
DS202103-0397
2021
Neves, S.P.Comparative geological evolution of the Borobrema province and Sao Francisco craton ( eastern Brazil): decratonization and crustal reworking during west Gondwana assembly and implications for paleogeographic reconstructions.Precambrian Research, Vol. 355, 106119, 23p. PdfSouth America, Brazil, Paraibacraton

Abstract: 70-80% of the continental crust was produced during the 4.0-2.0 Ga time span, but the preserved area of Archean/early Paleoproterozoic cratons is smaller than 40%. Part of this deficit can be accounted for by the presence of reworked old crust in the basement of mid-Paleoproterozoic to Phanerozoic orogenic belts. Here, I compare the crustal evolution of the Brasiliano-Pan-African Borborema Province (BP) with that of the São Francisco Craton (SFC) in eastern Brazil and highlight numerous geological aspects, several of which are uncommon in other cratons/orogenic belts, indicating their shared evolution for most of the Precambrian. These include: 1. Presence of the oldest rocks (Eo- to Paleoarchean) from the South American Platform. 2. Occurrence of Siderian (2.5-2.3 Ga) rocks. 3. Generation of juvenile crust and reworking of pre-existing rocks during the Transamazonian event (2.2-2.0 Ga). 4. Intermittent rifting and intraplate magmatic events between 1.78 and 1.50 Ga. 5. Intrusion of mafic dykes and A-type granites at 1.0-0.85 Ga. 6. Intrusion of mafic rocks, syenites and granitoids with intraplate signature between ca. 0.71 and 0.64 Ga. 7. The lack of evidence for igneous and tectonic activity between ca. 1.95 and 1.78 Ga, during most of the Mesoproterozoic, and between 0.85 and 0.73 Ga. The temporal coincidence of Rhyacian orogenic events in the SFC and BP favors the hypothesis that they were part of a continent formed by the accretion of Archean/early-Paleoproterozoic blocks and of juvenile arc crust during the Transamazonian Orogeny. In addition, the recording of several intraplate tectonomagmatic events from the late-Paleoproterozoic to the Neoproterozoic indicates that they remained united until at least the mid-Neoproterozoic. In this context, BP can be interpreted as a fragment of the SFC re-accreted and reworked during the Brasiliano-Pan-African Orogeny (ca. 640-550 Ma). Recent studies demonstrate that most of the basement of the Brasília and Araçuaí belts, which occur to the west and east, respectively, of the SFC, also resulted from its reworking. Therefore, an area c. two times larger than the current outline of the SFC can be inferred, indicating an intense process of decratonization during the Brasiliano-Pan-African Orogeny. The intermittent late Paleoproterozoic to early Neoproterozoic extension-related magmatism in this Greater São Francisco paleocontinent contrasts with the worldwide occurrence of orogenic episodes accompanying the amalgamation of the Columbia supercontinent, its fragmentation, and the build-up of Rodinia. These differences suggest that Greater São Francisco was not part of these supercontinental assemblages.
DS202101-0025
2020
Ngwenya, N.S., Tappe, S.Diamondiferous lamproites of the Luangwa Rift in central Africa and links to remobilized cratonic lithosphere.Chemical Geology, in press available 31p. PdfAfrica, Zambialamproite

Abstract: Mesozoic diamondiferous lamproite pipes occur along the Kapamba River within the Luangwa Valley of eastern Zambia, which is a ca. 300-200?Ma old Karoo-age precursor branch to the East African Rift System. The Luangwa Rift developed above a reactivated mega-shear zone that cuts through the Proterozoic Irumide Belt between the Congo-Tanzania-Kalahari cratons and thus it provides a rare snapshot of early-stage cratonic rift evolution. The primary mineralogy of the fresh volcanic rocks suggests that they represent a continuum between primitive olivine lamproites and slightly more evolved olivine-leucite lamproites. Mineral compositions and evolutionary trends, such as the strong Al-depletion at Tisingle bondF enrichment in groundmass phlogopite and potassic richterite, resemble those of classic lamproite provinces in circum-cratonic settings (e.g., the Leucite Hills of Wyoming and the West Kimberley field in Australia). However, there are some similarities to orangeites from the Kaapvaal craton (formerly Group-2 kimberlites), type kamafugites from the East African Rift, and ultramafic lamprophyres from a key region of the rifted North Atlantic craton, which implies a complex interplay between source-forming and tectonic processes during Karoo-age lamproite magma formation beneath south-central Africa. The bulk compositions of the Kapamba volcanic rocks fall within the range of ‘cratonic’ low-silica lamproites, but there is overlap with orangeites, in particular with the more evolved leucite- and sanidine-bearing orangeite varieties. Modelling of the process by which most of the original leucite was transformed into analcime suggests that the primitive alkaline magmas at Kapamba contained ~6-9?wt% K2O and had high K2O/Na2O ratios between ~1.6-6.2 at >10?wt% MgO - confirming the ultrapotassic nature of the mantle-derived magmatism beneath the Luangwa Rift. The virtually CO2-free, H2O-F-rich Kapamba lamproites present an extension of the geochemical continuum displayed by the members of the CO2-H2O-rich kamafugite / ultramafic lamprophyre group. Hence, we suggest that the Kapamba lamproites and the type kamafugites, located within separate branches of the East African Rift System, represent melting products of similar K-metasomatized cratonic mantle domains, but their formation occurred under contrasting volatile conditions at different stages during rift development (i.e., incipient versus slightly more advanced rifting). Temperature estimates for peridotite-derived olivine xenocrysts from the Kapamba lamproites suggest that the Luangwa Valley is an aborted cratonic rift that retained a relatively cold (?42?mW/m2) lithospheric mantle root down to ~180-200?km depth during the Mesozoic. Olivine major and trace element compositions support the presence of an Archean mantle root (up to 92.4?mol% forsterite contents) that is progressively metasomatized toward its base (e.g., increasing Tisingle bondCu contents with depth). For south-central Africa, it appears that significant volumes of Archean cratonic mantle domains ‘survived’ beneath strongly deformed and granite-intruded Proterozoic terranes, which suggests that the continental crust is more strongly impacted during collisional or rift tectonics than the ‘stabilizing’ mantle lithosphere.
DS202104-0596
2021
Nieto, I.E.M., Prieto, G.A.Structural signatures of the Amazonian Craton in eastern Columbia from gravity and magnetometry data interpretation.Tectonophysics, Vol. 800, 228705, 15p. PdfSouth America, Colombiageophyics - magnetics, gravity

Abstract: Geophysical interpretation of potential field data plays an important role in the integration of geological data. Estimation of density and magnetic susceptibility variations within the upper crust helps evaluating the continuity of geological structures in the field. In the present study we use gravity and magnetic data in NW Amazonian Craton in Colombia. Total horizontal gradient of the reduction to magnetic pole were used to delineate magnetic lineaments and domains showing four zones, each with its own features. Multiscale edge detection (worming) of the data help delineate upper crustal structures that we interpret as tectonic boundaries that correlate with the four zones identified. 3D density and magnetic susceptibility inversion showed high density and/or high magnetic susceptibility sources correlated with these crustal structures. Zone (1) is located south of the Guaviare River, with predominant NW-SE and NE-SW magnetic lineaments; zone (2), located from south of the Guaviare River to the north, present nearly E-W magnetic lineaments and a deep E-W edge interpreted as a possible shear zone parallel to Guaviare, Orinoco and Ventuari rivers; zone (3) from south of the Vichada River to the north, with NE-SW and NW-SE lineaments; N-S zone (4) cuts the zones (2) and (3), characterized by high density/magnetic susceptibility source bounded by N-S deep edges. A more complete tectonic evolution interpretation requires further work, but we speculate that the zone (4) could indicate an aborted rift/collision suture and that the zone (2) is indicative of a younger deformation event. Shear direction at (2) is not clear: geological maps show NEE-SWW right-lateral faulting, but geophysical anomalies suggest left-lateral displacement, highlighted by left dislocation of the Orinoco River. We also speculate that a N-S edge located at the SE of the area can be related with the Atabapo Belt and the limit of Ventuari-Tapajós and Rionegro geochronological provinces.
DS202105-0779
2021
Nikolenko, E.I., Sharygin, I.S., Rezvukhin, D.I., Malkovets, v.G., Tychkov, N.S., Pokhilenko, N.P.Sulfide-bearing polymineralic inclusions in mantle-derived garnets from lamprophyres of the Chompolo field, (Central Aldan, Siberian Craton).Doklady Earth Sciences, Vol. 497, pp. 300-304.Russia, Siberiadeposit - Chompolo

Abstract: Sulfide-bearing polymineralic inclusions in mantle-derived chromium pyrope garnets of lherzolite paragenesis from lamprophyres of the Chompolo field (Aldan shield, southern Siberian craton) have been studied. The inclusions are composed of either only sulfides or sulfides in association with other minerals (carbonates, silicates, oxides, etc.). The sulfide part of the inclusions is represented by up to four minerals. Among the sulfides, minerals rich in Cu and Ni have been found, whereas Fe sulfides (pyrrhotite, troilite) are absent. This distinguishes the inclusions studied from the majority of sulfide inclusions in mantle minerals and diamonds, as well as in mantle xenoliths from kimberlites. The formation of polymineralic inclusions in chromium garnets of the Chompolo field is attributed to the effect of a carbonate-silicate metasomatic melt/fluid on mantle peridotites, as evidenced by the mineral suite associated with the sulfides. The research results indicate significant differences in the nature of metasomatic processes that occurred in the lithospheric mantle of the southern and central parts of the Siberian craton.
DS202111-1779
2021
Niyazova, S., Kopylova, M., Dyck, B., Benisek, A., Dachs, E., Stefano, A.The assimilation of felsic xenoliths in kimberlites: insights into temperature and volatiles during kimberlite emplacement. ( Renard)Contributions to Mineralogy and Petrology, Vol. 176, 10, 28p. PdfCanada, Quebecdeposit - Renard

Abstract: This study aims to constrain the nature of kimberlite-xenolith reactions and the fluid origin for Kimberley-type pyroclastic kimberlite (KPK). KPKs are characterized by an abundance of basement xenoliths (15-90%) and display distinct pipe morphology, textures, and mineralogy. To explain the KPK mineralogy deviating from the mineralogy of crystallized kimberlite melt, we study reactions between hypabyssal kimberlite transitional to KPK and felsic xenoliths. Here, we characterize the pectolite-diopside-phlogopite-serpentine-olivine common zonal patterns using petrography, bulk composition, thermodynamic modelling, and conserved element ratio analysis. To replicate the observed mineral assemblages, we extended the thermodynamic database to include pectolite, using calculated density functional theory methods. Our modelling reproduces the formation of the observed distinct mineralogy in reacted granitoid and gneiss. The assimilation of xenoliths is a process that starts from high temperatures (1200-600 °C) with the formation of clinopyroxene and wollastonite, continues at 600-200 °C with the growth of clinopyroxene, garnet, and phlogopite finishing at temperatures?
DS202107-1118
2021
Nkere, B.J., Janney, P.E., Tinguely, C.Cr-poor and Cr-rich clinopyroxene and garnet megacrysts from southern African Group 1 and Group 2 kimberlites: clues to megacrysts origins and their relationship to kimberlites.Lithos, Vol. 396-397, 106231 pdfAfrica, South Africa, Botswanadeposit - Colossus, Orapa, Kalput, Bellsbank

Abstract: Controversies surround the origin of kimberlite megacrysts, including whether and how they are genetically related to their host kimberlites, the relationship between the Cr-poor and Cr-rich suites and the dominant processes responsible for elemental and isotopic variations of megacrysts from a given kimberlite. We present new in-situ major and trace element and Sr isotopic results for clinoyroxene and garnet megacrysts from four southern African kimberlites: Colossus and Orapa (Group 1 kimberlites on the Zimbabwe craton), and Kalkput and Bellsbank (Group 2 kimberlites on the western Kaapvaal craton), that include both Cr-poor and Cr-rich megacryst varieties. Cr-poor megacrysts are present at Colossus, Orapa and Kalkput and the data exhibit tight, well-defined trends on major element diagrams as well as incompatible and rare earth element abundances similar to those previously reported for Cr-poor megacrysts. Cr-rich megacrysts, which are also present at Orapa and are the only variety present at Bellsbank, generally have higher Mg# values, lack well-defined major element trends and show stronger incompatible element enrichments as well as more radiogenic 87Sr/86Sri ratios than Cr-poor megacrysts from the same kimberlite group. Thermobarometry indicates that the Cr-poor megacrysts equilibrated at temperatures of ?1200 to 1450 °C and pressures of 4.5 to 7.5 GPa. Cr-rich megacrysts, in contrast, extend to temperatures and pressures as low as 700 °C and 3 GPa, respectively. This indicates that, in the studied suites, Cr-poor megacrysts equilibrated at high temperatures in the lower lithosphere (>135 km), whereas Cr-rich megacrysts typically equilibrated at lower temperatures and pressures. Within the Cr-poor megacrysts from Group 1 and Group 2 kimberlites, there is a clear correspondence between kimberlite group, diagnostic incompatible element ratios (e.g., Nb/La) and Sr isotope ratios that parallel the differences noted between whole-rock Group 1 and Group 2 kimberlites. In the case of Cr-poor megacrysts, similar calculated melt compositions in equilibrium with garnet and clinopyroxene from the same kimberlite were obtained using recent high-pressure mineral?carbonated melt partition coefficients. This suggests formation in conditions close to trace element equilibrium, and is consistent with crystallization from primitive melts with kimberlite-like trace element compositions. In the case of Cr-rich megacrysts, differences in the compositions of melts in equilibrium with clinopyroxene and garnet tend to be larger, and melts in equilibrium with Cr-rich clinopyroxene tend to show significantly greater incompatible element enrichments than those of estimated near-primary kimberlite melts. This could be due to the different behaviour of clinopyroxene and garnet during metasomatic melt-rock interaction, but the apparent disequilibrium between clinopyroxene and garnet could also be due to some of the Cr-rich megacrysts actually being peridotitic xenocrysts. We propose a model for the origin of southern African megacrysts in which carbonated protokimberlite melts formed stockwork-like bodies of variable size in the deep lithosphere (>130 km), which fed networks of melt-filled veins extending into the surrounding and overlying mantle. Crystallization of larger melt bodies resulted in megacryst assemblages dominated by Cr-poor megacrysts, and the incompatible element and isotopic characteristics of these dominantly reflect those of the protokimberlite melt. In contrast, crystallization of smaller melt bodies and their vein networks resulted in megacryst assemblages dominated by Cr-rich megacrysts, which formed as a result of extensive assimilation and metasomatic melt-rock interaction between protokimberlite and peridotite wallrock at low melt/rock ratios, particularly in the middle to shallow lithosphere where pre-existing potassic metasomatic heterogeneities are prevalent. The Cr-rich nature and enrichments in incompatible elements and radiogenic Sr in the Cr-rich megacrysts reflect extensive interaction of their parental magmas with this metasomatized peridotite.
DS202108-1301
2021
Nosova, A.A., Kopylova, M.G., Sazonova, L.V., Vozniak, A.A., Kargin, A.V., Lebedeva, N.M., Volkova, G.D., Peresetskaya, E.V.Petrology of lamprophyre dykes in the Kola alkaline carbonatite province.Lithos, Vol. 398-399. 106277Russia, Kola Peninsulacarbonatite

Abstract: The study reports petrography, bulk major and trace element compositions of lamprophyric Devonian dykes in three areas of the Kola Alkaline Carbonatite Province (N Europe). Dykes in one of these areas, Kandalaksha, are not associated with a massif, while dykes in Kandaguba and Turij Mys occur adjacent (< 5 km) to coeval central multiphase ultramafic alkaline?carbonatitic massifs. Kandalaksha dyke series consists of aillikites - phlogopite carbonatites and monchiquites. Kandaguba dykes range from monchiquites to nephelinites and phonolites; Turij Mys dykes represent alnöites, monchiquites, foidites, turjaites and carbonatites. Some dykes show extreme mineralogical and textural heterogeneity and layering we ascribe to fluid separation and crystal cumulation. Melt evolution of the dykes was modelled with Rhyolite-MELTS and compared with the observed order and products of the crystallization. Our results suggest that the studied rocks were related by fractional crystallization and liquid immiscibility. Primitive melts of aillikites or olivine melanephelinites initially evolved at P = 1.5-0.8 GPa without a SiO2 increase due to abundant clinopyroxene crystallization controlled by the CO2-rich fluid. At 1-1.1 GPa the Turij Mys melts separated immiscible carbonatite melt, which subsequently exsolved late carbonate-rich fluids extremely rich in trace elements. Kandaguba and Turij Mys melts continued to fractionate at lower pressures in the presence of hydrous fluid to the more evolved nephelinite and phonolite melts. The studied dykes highlight the critical role of the parent magma chamber in crystal fractionation and magma diversification. The Kandalaksha dykes may represent a carbonatite - ultramafic lamprophyre association, which fractionated at 45-20 km in narrow dykes on ascent to the surface and could not get more evolved than monchiquite. In contrast, connections of Kandaguba and Turij Mys dykes to their massif magma chambers ensured the sufficient time for fractionation, ascent and a polybaric evolution. This longevity generated more evolved rock types with the higher alkalinity and an immiscible separation of carbonatites.
DS202105-0780
2021
Ohtani, E.Hydration and dehydration in Earth's interior.Annual Review of Earth Planetary Sciences, Vol. 49, pp. 253-278.Mantlewater

Abstract: Hydrogen and deuterium isotopic evidence indicates that the source of terrestrial water was mostly meteorites, with additional influx from nebula gas during accretion. There are two Earth models, with large (7-12 ocean masses) and small (1-4 ocean masses) water budgets that can explain the geochemical, cosmochemical, and geological observations. Geophysical and mineral physics data indicate that the upper and lower mantles are generally dry, whereas the mantle transition zone is wetter, with heterogeneous water distribution. Subducting slabs are a source of water influx, and there are three major sites of deep dehydration: the base of the upper mantle, and the top and bottom of the lower mantle in addition to slabs in the shallow upper mantle. Hydrated regions surround these dehydration sites. The core may be a hidden reservoir of hydrogen under the large water budget model.
DS202107-1119
2021
Ohtani, E.Hydration and dehydration in Earth's interior.Annual Review of Earth and Planetary Sciences, Vol. 49, pp. 253-278.Mantlewater

Abstract: Hydrogen and deuterium isotopic evidence indicates that the source of terrestrial water was mostly meteorites, with additional influx from nebula gas during accretion. There are two Earth models, with large (7-12 ocean masses) and small (1-4 ocean masses) water budgets that can explain the geochemical, cosmochemical, and geological observations. Geophysical and mineral physics data indicate that the upper and lower mantles are generally dry, whereas the mantle transition zone is wetter, with heterogeneous water distribution. Subducting slabs are a source of water influx, and there are three major sites of deep dehydration: the base of the upper mantle, and the top and bottom of the lower mantle in addition to slabs in the shallow upper mantle. Hydrated regions surround these dehydration sites. The core may be a hidden reservoir of hydrogen under the large water budget model.
DS202103-0398
2020
Oliveira, B., Alfonso, J.C., Tilhac, R.A disequilibrium reactive transport model for mantle magmatism.Journal of Petrology, Vol. 61, 9, egaa067, 35p. PdfMantlemagmatism

Abstract: Besides standard thermo-mechanical conservation laws, a general description of mantle magmatism requires the simultaneous consideration of phase changes (e.g. from solid to liquid), chemical reactions (i.e. exchange of chemical components) and multiple dynamic phases (e.g. liquid percolating through a deforming matrix). Typically, these processes evolve at different rates, over multiple spatial scales and exhibit complex feedback loops and disequilibrium features. Partially as a result of these complexities, integrated descriptions of the thermal, mechanical and chemical evolution of mantle magmatism have been challenging for numerical models. Here we present a conceptual and numerical model that provides a versatile platform to study the dynamics and nonlinear feedbacks inherent in mantle magmatism and to make quantitative comparisons between petrological and geochemical datasets. Our model is based on the combination of three main modules: (1) a Two-Phase, Multi-Component, Reactive Transport module that describes how liquids and solids evolve in space and time; (2) a melting formalism, called Dynamic Disequilibirum Melting, based on thermodynamic grounds and capable of describing the chemical exchange of major elements between phases in disequilibrium; (3) a grain-scale model for diffusion-controlled trace-element mass transfer. We illustrate some of the benefits of the model by analyzing both major and trace elements during mantle magmatism in a mid-ocean ridge-like context. We systematically explore the effects of mantle potential temperature, upwelling velocity, degree of equilibrium and hetererogeneous sources on the compositional variability of melts and residual peridotites. Our model not only reproduces the main thermo-chemical features of decompression melting but also predicts counter-intuitive differentiation trends as a consequence of phase changes and transport occurring in disequilibrium. These include a negative correlation between Na2O and FeO in melts generated at the same Tp and the continued increase of the melt’s CaO/Al2O3 after Cpx exhaustion. Our model results also emphasize the role of disequilibrium arising from diffusion for the interpretation of trace-element signatures. The latter is shown to be able to reconcile the major- and trace-element compositions of abyssal peridotites with field evidence indicating extensive reaction between peridotites and melts. The combination of chemical disequilibrium of major elements and sluggish diffusion of trace elements may also result in weakened middle rare earth to heavy rare earth depletion comparable with the effect of residual garnet in mid-ocean ridge basalt, despite its absence in the modelled melts source. We also find that the crystallization of basalts ascending in disequilibrium through the asthenospheric mantle could be responsible for the formation of olivine gabbros and wehrlites that are observed in the deep sections of ophiolites. The presented framework is general and readily extendable to accommodate additional processes of geological relevance (e.g. melting in the presence of volatiles and/or of complex heterogeneous sources, refertilization of the lithospheric mantle, magma channelization and shallow processes) and the implementation of other geochemical and isotopic proxies. Here we illustrate the effect of heterogeneous sources on the thermo-mechanical-chemical evolution of melts and residues using a mixed peridotite-pyroxenite source.
DS202110-1630
2021
Omukaga, K.O.Is the fraud diamond perspective valid in Kenya?Journal of Financial Crime, Vol. 28, 3, pp. 810-840.Africa, Kenyalegal

Abstract: The purpose of this study was to determine the influence of the elements of the fraud diamond theory in detecting financial statement fraud among non-financial firms in Kenya. Secondary data used to calculate ratios and figures representing the study variables was collected using a checklist for each of the targeted firms listed in the Nairobi Securities Exchange in Kenya for the 2013-2017 period.
DS202106-0963
2020
Oparin, N., Oleynikov, O.Picroilmenite from kimberlite pipes of central Yakutia.IOP Conference series: Earth and Environmental Science, 609, 01028 8p. PdfRussia, Yakutiadeposit - Manchary, Aprelskaya

Abstract: Picroilmenite is one of the most important indicator minerals of kimberlite rocks, which can be used in solving petrological problems and in the search for diamond deposits. The present study shows the results of studying picroilmenite grains from the Manchary and Aprelskaya pipes within the Khompu-May kimberlite field (Central Yakutia). The rocks composing the pipes are represented by porphyritic kimberlite and kimberlite breccia, between which there are gradual transitions. Rocks forming the upper pipe horizons are highly carbonatized and supergenetically altered. Porphyritic segregations are represented by carbonatized serpentine pseudomorphs from macro-, megacrysts and olivine phenocrysts. Pyrope, picroilmenite mega-, macrocrysts and chromospinellide macrocrysts are found in both pipes. Most weakly altered parts of mesostasis are microgranular and formed mostly by phlogopite, with xenomorphic segregations of calcite and serpentine. Picroilmenite in both kimberlite bodies occurs as irregular and rounded macrorysts ranging from 0.7 to 10 mm and megacrysts ranging from 10 to 25 mm. Micrograins of this mineral were not diagnosed in the mesostasis. Individual grains of picroilmenite from the Manchary pipe are surrounded by a polymineral rim composed of either ferrospinel and magnetite, or perovskite and magnetite. High-and low-chromium varieties which correspond to two parageneses are identified among the picroilmenite grains from the Manchary pipe. Crystallization trend of high-chromium ilmenites from the Manchary pipe is clearly seen in the diagram in the coordinates Fe2O3-FeTiO3-MgTiO3 and associated with the presence of Cr-rich phlogopite from lherzolites xenoliths. Picroilmenite grains from the Aprelskaya kimberlite pipe are more magnesian in comparison with similar grains from the Manchary pipe. Picroilmenite from both pipes in the coordinates Fe2O3-FeTiO3-MgTiO3 is characterized by a magmatic kimberlite trend of the mineral composition evolution. The distribution of mineral composition points from the studied pipes in the diagram in the coordinates MgO - Cr2O3 has form of the "Haggerty parabola" (Haggerty, 1975) - typical for picroilmenites from kimberlites of industrial diamond-bearing middle Paleozoic pipes of Yakutia (Aikhal, Mir, Udachnaya). In general, picroilmenite of Central Yakutia pipes differs from picroilmenite of the Aikhal, Mir and Udachnaya pipes by the presence of the parabola right branch in the Haggerty diagram and an indistinct left branch. The Aikhal, Mir, and Udachnaya pipes are characterized by a clear demonstration of the left branch and a weak right. At the same time, the composition points of the high-chromium picroilmenite variety from the Manchary pipe in the Haggerty diagram coincide with the high-chromium picroilmenite from the Grib kimberlite pipe (Arkhangelsk diamondiferous province). Thus, the study showed the genetic polygeny of picroilmenite from the Manchary and Aprelskaya kimberlite pipes, and also the correlation with mineralogical diamond potential of both pipes traced by comparison with the known industrial ilmenite diamondiferous pipes of Yakutia and Arkhangelsk region.
DS202107-1120
2021
Ostrander, C.M., Johnson, A.C., Anbar, A.D.Earth's first redox revolution.Annual Review of Earth and Planetary Sciences, Vol. 49, pp. 337-366.Mantleredox

Abstract: The rise of molecular oxygen (O2) in the atmosphere and oceans was one of the most consequential changes in Earth's history. While most research focuses on the Great Oxidation Event (GOE) near the start of the Proterozoic Eon—after which O2 became irreversibly greater than 0.1% of the atmosphere—many lines of evidence indicate a smaller oxygenation event before this time, at the end of the Archean Eon (2.5 billion years ago). Additional evidence of mild environmental oxidation—probably by O2—is found throughout the Archean. This emerging evidence suggests that the GOE might be best regarded as the climax of a broader First Redox Revolution (FRR) of the Earth system characterized by two or more earlier Archean Oxidation Events (AOEs). Understanding the timing and tempo of this revolution is key to unraveling the drivers of Earth's evolution as an inhabited world—and has implications for the search for life on worlds beyond our own. Many inorganic geochemical proxies suggest that biological O2 production preceded Earth's GOE by perhaps more than 1 billion years. Early O2 accumulation may have been dynamic, with at least two AOEs predating the GOE. If so, the GOE was the climax of an extended period of environmental redox instability. We should broaden our focus to examine and understand the entirety of Earth's FRR.
DS202102-0212
2021
Otter, L.M., Forster, M.W., Belousova, E., O'Reilly, P., Nowak, D., Parlk, S., Clar, S., Foley, S.F., Jacob, D.E.GGR cutting-edge review nanoscale chemical imaging by photo-induced force microscopy: technical aspects and application to the geosciences. ( not specific to diamonds)Geostandards and Geoanalytical Research, doi:10.111/ GGR.12373. 51p. PdfGlobalspectroscopy, mineralogy

Abstract: Photo?induced force microscopy (PiFM) is a new?frontier technique that combines the advantages of atomic force microscopy with infrared spectroscopy and allows for the simultaneous acquisition of 3D topographic data with molecular chemical information at high spatial (~ 5 nm) and spectral (~ 1 cm?1) resolution at the nanoscale. This non?destructive technique is time efficient as it requires only conventional mirror?polishing and has fast mapping rates on the order of a few minutes that allow the study of dynamic processes via time series. Here, we review the method’s historical development, working principle, data acquisition, evaluation, and provide a comparison with traditional geochemical methods. We review PiFM studies in the areas of materials science, chemistry, and biology. In addition, we provide the first applications for geochemical samples including the visualisation of faint growth zonation in zircons, the identification of fluid speciation in high?pressure experimental samples, and of nanoscale organic phases in biominerals. We demonstrate that PiFM analysis is a time? and cost?efficient technique combining high?resolution surface imaging with molecular chemical information at the nanoscale and, thus, complements and expands traditional geochemical methods.
DS202107-1121
2021
Ozaydin, S., Selway, K., Griffin, W.L.Are xenoliths from southwestern Kaapvaal Craton representative of the broader mantle? Constraints from magnetotelluric modeling. KimberlitesAGU Research Letter, 10.1029/2021GL092570 11p. PdfAfrica, South Africageophysics - magnetotellurics

Abstract: Measuring the composition of the Earth’s mantle is important for understanding mantle processes like plate tectonics, but is surprisingly difficult. Our most accurate information comes from mantle rocks, called xenoliths, that have been brought to the surface during volcanic eruptions. However, these rocks only come from a handful of places. We tend to expect that the rest of the mantle has the same composition as the xenoliths but this might be incorrect. We tested whether xenolith compositions really are representative of the broader mantle by comparing them with compositions interpreted from electrical conductivity models of the mantle. We carried out this comparison in the Kimberley region, South Africa, because it has excellent xenolith and electrical conductivity data. Our results show that xenolith compositions do seem to be broadly representative but there are two important differences: Hydrous minerals found in some xenoliths may not be spatially extensive depending on temperature, and the water contents of some other minerals are different from the broader region. This means that the compositions of xenoliths are at least partly controlled by local processes. Electrical conductivity data may be more useful for measuring some aspects of the composition of the broader mantle, especially its water content.
DS202110-1631
2021
Ozaydin, S., Selway, K., Griffin, W.L., Moorkamp, M.Probing the southern African lithosphere with magnetotellurics, Part II, linking electrical conductivity, composition and tectono-magmatic evolution.Journal of Geophysical Research: Solid Earth , preprint available 40p. PdfAfricakimberlites

Abstract: The tectonic history of Southern Africa includes Archean formation of cratons, multiple episodes of subduction and rifting and some of the world's most significant magmatic events. These processes left behind a compositional trail that can be observed in xenoliths and measured by geophysical methods. The abundance of kimberlites in southern Africa makes it an ideal place to test and calibrate mantle geophysical interpretations that can then be applied to less well-constrained regions. Magnetotellurics (MT) is a particularly useful tool for understanding tectonic history because electrical conductivity is sensitive to temperature, bulk composition, accessory minerals and rock fabric. We produced three-dimensional MT models of the southern African mantle taken from the SAMTEX MT dataset, mapped the properties of $\sim36000$ garnet xenocrysts from Group I kimberlites, and compared the results. We found that depleted regions of the mantle are uniformly associated with high electrical resistivities. The conductivity of fertile regions is more complex and depends on the specific tectonic and metasomatic history of the region, including the compositions of metasomatic fluids or melts and the emplacement of metasomatic minerals. The mantle beneath the $\sim 2.05$ Ga Bushveld Complex is highly conductive, probably caused by magmas flowing along a lithospheric weakness zone and precipitating interconnected, conductive accessory minerals such as graphite and sulfides. Kimberlites tend to be emplaced near the edges of the cratons where the mantle below 100 km depth is not highly resistive. Kimberlites avoid strong mantle conductors, suggesting a systematic relationship between their emplacement and mantle composition.
DS202112-1941
2021
Ozkan, M., Celik, O.F., Marzoli, A., Cortuk, R.M., Billor, M.Z.The origins of carbonatites from the eastern Armutlu Peninsula, ( NW Turkey).Journal of the Geological Society, Vol. 178, 10.1144/jgs2020-171Asia, Turkeydeposit - Armutlu

Abstract: Unusual carbonate dykes, which have a thickness of up to 4 m, cross-cut the amphibolites from the high-grade metamorphic rocks in the Armutlu Peninsula (NW Turkey). They are described as carbonatites on the basis of their petrographic, geochemical and isotope-geochemical characteristics. The carbonatites, which commonly show equigranular texture, are composed of calcite and clinopyroxene with other minor phases of plagioclase, mica, garnet, K-feldspar, quartz, epidote, titanite and opaque minerals. They contain abundant xenoliths of pyroxenite and amphibolite. The geochemical characteristics of the carbonatites are significantly different from those of mantle-derived carbonatites. They have remarkably low incompatible element (e.g. Ba, Th, Nb) and total REE (11-91 ppm) contents compared with mantle-derived carbonatites. The high 87Sr/86Sr(i) (0.70797-0.70924) and low ?Nd(t) (?8.08 to ?9.57) of the carbonatites confirm that they were derived from the continental crust rather than from a mantle source. Mica from carbonatite was dated by the 40Ar/39Ar method, yielding a Late Jurassic-Early Cretaceous age (148-137 Ma). This is significantly younger than the age of adjacent amphibolites (Upper Triassic). All data from field studies, as well as petrographic, geochemical and geochronological observations, suggest that these carbonatites were formed from anatectic melting of a carbonated source area in the continental crust.
DS202107-1122
2021
Ozkan, M., Faruk, O., Marzoli, A., Cortuk, R.M., Billor, M.Z.The origin of carbonatites from the eastern Armutlu Peninsula, ( NW Turkey).Journal of the Geological Society , https://doi.org/10.1144/jgs2020-171Europe, Turkeycarbonatite

Abstract: Unusual carbonate dykes, which have a thickness of up to 4 m, cross-cut the amphibolites from the high-grade metamorphic rocks in the Armutlu Peninsula (NW Turkey). They are described as carbonatites on the basis of their petrographic, geochemical and isotope-geochemical characteristics. The carbonatites, which commonly show equigranular texture, are composed of calcite and clinopyroxene with other minor phases of plagioclase, mica, garnet, K-feldspar, quartz, epidote, titanite and opaque minerals. They contain abundant xenoliths of pyroxenite and amphibolite. The geochemical characteristics of the carbonatites are significantly different from those of mantle-derived carbonatites. They have remarkably low incompatible element (e.g. Ba, Th, Nb) and total REE (11-91 ppm) contents compared with mantle-derived carbonatites. The high 87Sr/86Sr(i) (0.70797-0.70924) and low ?Nd(t) (?8.08 to ?9.57) of the carbonatites confirm that they were derived from the continental crust rather than from a mantle source. Mica from carbonatite was dated by the 40Ar/39Ar method, yielding a Late Jurassic-Early Cretaceous age (148-137 Ma). This is significantly younger than the age of adjacent amphibolites (Upper Triassic). All data from field studies, as well as petrographic, geochemical and geochronological observations, suggest that these carbonatites were formed from anatectic melting of a carbonated source area in the continental crust.
DS202102-0213
2021
Palyanov, Y.N., Borzdov, Y.M., Sokol, A.G., Btaaleva, Y.V., Kupriyanov, I.N., Reitsky, V.N., Wiedenbeck, M., Sobolev, N.V.Diamond formation in an electric field under deep Earth conditions.Science Advances, Vol. 7, 4, eabb4644 doi: 10.1126/ sciadv.abb4644 28p. PdfMantlegeophysics

Abstract: Most natural diamonds are formed in Earth’s lithospheric mantle; however, the exact mechanisms behind their genesis remain debated. Given the occurrence of electrochemical processes in Earth’s mantle and the high electrical conductivity of mantle melts and fluids, we have developed a model whereby localized electric fields play a central role in diamond formation. Here, we experimentally demonstrate a diamond crystallization mechanism that operates under lithospheric mantle pressure-temperature conditions (6.3 and 7.5 gigapascals; 1300° to 1600°C) through the action of an electric potential applied across carbonate or carbonate-silicate melts. In this process, the carbonate-rich melt acts as both the carbon source and the crystallization medium for diamond, which forms in assemblage with mantle minerals near the cathode. Our results clearly demonstrate that electric fields should be considered a key additional factor influencing diamond crystallization, mantle mineral-forming processes, carbon isotope fractionation, and the global carbon cycle.
DS202108-1302
2021
Pamato, M.G., Novella, D., Jacob, B., Oliveira, B., Pearson, D.G.Petrogenetic sulfide inclusions in diamonds date the diamond formation event using Re-Os isotopes.Geology, Vol. 49, pp. 941-945.Canada, Ontario, Nunavutdeposit - Victor, Jericho

Abstract: Sulfides are the most abundant inclusions in diamonds and a key tool for dating diamond formation via Re-Os isotopic analyses. The manner in which fluids invade the continental lithospheric mantle and the time scale at which they equilibrate with preexisting (protogenetic) sulfides are poorly understood yet essential factors to understanding diamond formation and the validity of isotopic ages. We investigated a suite of sulfide-bearing diamonds from two Canadian cratons to test the robustness of Re-Os in sulfide for dating diamond formation. Single crystal X-ray diffraction (XRD) allowed determination of the original monosulfide solid-solution (Mss) composition stable in the mantle, indicating subsolidus conditions of encapsulation, and providing crystallographic evidence supporting a protogenetic origin of the inclusions. The results, coupled with a diffusion model, indicate Re-Os isotope equilibration is sufficiently fast in sulfide inclusions with typical grain size, at mantle temperatures, for the system to be reset by the diamond-forming event. This confirms that even if protogenetic, the Re-Os isochrons defined by these minerals likely reflect the ages of diamond formation, and this result highlights the power of this system to date the timing of fluid migration in mantle lithosphere.
DS202105-0781
2021
Pamato, M.G., Novella, D., Jacobs, D.E., Oliveira, B., Pearson, D.G., Greene, S., Alfonso, J.C., Favero, M., Stachel, T., Alvaro, M., Nestola, F.Protogenetic sulfide inclusions in diamonds date the diamond formation event using Re-Os isotopes. Victor, JerichoGeology , Vol. 49, 4, 5p. Canada, Ontario, Nunavutdiamond inclusions

Abstract: Sulfides are the most abundant inclusions in diamonds and a key tool for dating diamond formation via Re-Os isotopic analyses. The manner in which fluids invade the continental lithospheric mantle and the time scale at which they equilibrate with preexisting (protogenetic) sulfides are poorly understood yet essential factors to understanding diamond formation and the validity of isotopic ages. We investigated a suite of sulfide-bearing diamonds from two Canadian cratons to test the robustness of Re-Os in sulfide for dating diamond formation. Single-crystal X-ray diffraction (XRD) allowed determination of the original monosulfide solid-solution (Mss) composition stable in the mantle, indicating subsolidus conditions of encapsulation, and providing crystallographic evidence supporting a protogenetic origin of the inclusions. The results, coupled with a diffusion model, indicate Re-Os isotope equilibration is sufficiently fast in sulfide inclusions with typical grain size, at mantle temperatures, for the system to be reset by the diamond-forming event. This confirms that even if protogenetic, the Re-Os isochrons defined by these minerals likely reflect the ages of diamond formation, and this result highlights the power of this system to date the timing of fluid migration in mantle lithosphere.
DS202110-1632
2021
Panikorovskii, T.L., Mikhailova, J.A., Pakhomovsky, y.A., Bazai, A.V., Aksenov, S.M., Kalashnikov, A.O., Krivovichev, S.V.Zr-rich eudialyte from the Lovozero peralkaline massif, Kola Peninsula, Russia.Minerals MDPI, Vol. 11, 982. 18p pdfRussia, Kola Peninsuladeposit - Lovozero

Abstract: The Lovozero peralkaline massif (Kola Peninsula, Russia) has several deposits of Zr, Nb, Ta and rare earth elements (REE) associated with eudialyte-group minerals (EGM). Eudialyte from the Alluaiv Mt. often forms zonal grains with central parts enriched in Zr (more than 3 apfu) and marginal zones enriched in REEs. The detailed study of the chemical composition (294 microprobe analyses) of EGMs from the drill cores of the Mt. Alluaiv-Mt. Kedykvyrpakhk deposits reveal more than 70% Zr-enriched samples. Single-crystal X-ray diffraction (XRD) was performed separately for the Zr-rich (4.17 Zr apfu) core and the REE-rich (0.54 REE apfu) marginal zone. It was found that extra Zr incorporates into the octahedral M1A site, where it replaces Ca, leading to the symmetry lowering from R3¯m to R32. We demonstrated that the incorporation of extra Zr into EGMs makes the calculation of the eudialyte formula on the basis of Si + Al + Zr + Ti + Hf + Nb + Ta + W = 29 apfu inappropriate.
DS202104-0597
2021
Parashuramulu, V., Shankar, R., Sarma, V.S., Nagaraju, E., Babu, N.R.Baddeleyite Pb-Pb geochrnology and paleomagnetic poles for ~1.89-~1.86 Ga mafic intrusions from the Dharwar craton, India, and their paleogeographic implications.Tectonophysics, Vol. 805, 228789 18p. PdfIndiamagmatism

Abstract: We present new key paleomagnetic pole at 13°S, 152°E (k = 21, A95 = 7.8°) for recently identified 1864.4 ± 2.7 Ma (weighted mean age of four Pbsingle bondPb ages) mafic magmatic event, based on a detailed paleomagnetic study of dolerite dykes and sills intruding Archean basement rocks and Tadipatri formation of the Cuddapah basin, Dharwar craton respectively. The Pbsingle bondPb baddeleyite geochronology yields a crystallisation age of 1867.1 ± 1.0 Ma (MSWD = 1.02) for N77°E trending dyke in the southern region to Cuddapah basin. This new age obtained, confirms the presence of ~1864 Ma magmatic episode with a spatial extent of ~400 km in the Eastern Dharwar craton, within the brief period of ~5 Ma. The paleomagnetic results in these dykes revealed reverse polarity magnetisation direction with mean D = 107°, I = 24° (N = 13 sites, ?95 = 10°). Here, we also update the normal polarity magnetic directions on ~1.89 Ga swarm, and the corresponding paleopole situated at 21°N, 336°E (N = 79 sites, A95 = 3.6°). The paleoposition of India is constrained around the equator during ~1.89-1.86 Ga time. The paleogeographic reconstructions were also been attempted at ~1.89 Ga and ~ 1.86 Ga with available key poles from other cratons, indicates the possibility of single plume acting as a source for two distinguishable radial emplacement of mafic dyke swarms across India (Dharwar and Bastar craton) and Western Australia (Yilgarn craton) within a time span of ~35 Ma. The individual movement of India, Baltica and Siberia with a drift rate of ~5.55 cm/yr towards the south, whereas Amazonia craton has moved rapidly to the north (~24.9 cm/yr), do not suggest the amalgamation of a supercontinent (Columbia/ Nuna) during ~1.88-1.86 Ga time.
DS202112-1942
2021
Pardieu, V.Back in the field: an expedition to Greenland's ruby mines.Gems & Jewellery, Vol. 30, 3, pp. 12-17.Europe, Greenlanddeposit - ruby
DS202101-0026
2020
Pardieu, V., Sangsawong, S., Cornuz, L., Raynaud, V., Luetrakulprawat, S.Update on emeralds from the Mananjary-Irondo area, Madagascar.Journal of Gemology, Vol. 37, 4, pp. 416-425.Africa, Madagascaremerald
DS202108-1303
2021
Parnell, J., Brolly, C., Boyce, J.Graphite from paleoproterozoic enhanced carbon burial, and its metallogenic legacy. ** not specific to diamondsGeological Magazine, doi.10.1017/S0016756821000583 8p. Mantlecarbon

Abstract: The episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni-Co-Cu-PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon older Palaeoproterozoic graphite. Palaeoproterozoic carbon deposition has thus left a unique legacy of both graphite deposits and long-term ore deposition.
DS202102-0214
2021
Pattnaik, J., Demouchy, S., Ghosh, S.Low hydrogen concentrations in Dharwar cratonic lithospheric inferred from peridotites, Wajrakarur kimberlite field: implications for mantle viscosity and carbonated silicate melt metasomatism.Precambrian Research, Vol. 352, doi.org/1016 /j.precamres .2020.105982 15p. PdfIndiadeposit - Wajrakarur

Abstract: Hydrogen as an atomic impurity in mantle minerals is recurrently proposed as a key element impacting significantly on many mantle properties and processes such as melting temperature and mechanical strength. Nevertheless, interpretation based on the natural samples remains weak as we do not have yet a robust world-wild database for hydrogen concentrations in mantle minerals and rocks. Here, we report the first hydrogen concentrations in nominally anhydrous minerals from a rare selection of ultramafic rocks and minerals embedded in Mesoproterozoic Wajrakarur kimberlites (Eastern Dharwar craton, India). Based on key chemical elements, we demonstrate that olivine, pyroxenes and garnet from the Dharwar craton are of mantle origin. We quantify the hydrogen concentrations using Fourier transform infrared spectroscopy (FTIR) and mineral-specific FTIR calibrations. Calculated hydrogen concentrations are, in average, 18 ppm wt H2O in olivine, 70 ppm wt H2O in orthopyroxene and 207 ppm wt H2O in clinopyroxene. Garnet has highly variable hydrogen concentration ranging from 0 to 258 ppm wt H2O, probably influenced by nano-scale inclusions. The average of clean garnet spectra yields 14.5 ppm wt H2O. The reconstructed hydrogen bulk concentrations of Dharwar peridotites yields ppm wt H2O. This value is two to five times lower than the estimated hydrogen concentration in the lithospheric mantle, and agree well with the lower range of hydrogen bulk concentration from the current data base for the upper mantle minerals transported by kimberlites from other cratons (e.g., South Africa, Siberia). The low hydrogen concentration in mantle minerals, together with petrological and geochemical evidence of carbonated silicate melt metasomatism in Dharwar cratonic lithospheric mantle, suggest that these xenoliths are possibly related to proto-kimberlite melts with low water activity prior to being transported to the surface by the Mesoproterozoic Wajrakarur kimberlites. These observations, valid to a depth of ~165-km, suggest that cratonic lithosphere beneath the Dharwar craton may not be particularly indicative of an abnormal hydrogen-rich southern Indian lithosphere in the late Archean and that hydroxylic weakening in olivine would induced a negligible effect on the mantle viscosity of Indian subcontinent.
DS202102-0215
2020
Pavlushkin, A., Loginova, A., Seryotkin, Y.Crystallographic orientation and geochemical features of mineral inclusions in diamonds.Russian Geology and Geophysics, doi:10.15372 /RG2020144 21p. PdfRussiadeposit - Mir, Udachnaya, Aikal, Yubileinya

Abstract: The orientation of 76 mineral inclusions represented by olivine (25 inclusions), pyrope (13 inclusions), and magnesiochromite (38 inclusions) was measured in 16 diamond samples from the major primary diamond deposits of Yakutia: Mir, Udachnaya, Internatsionalnaya, Aikhal, and Yubileynaya kimberlite pipes. The novelty of the study is that it provides a special purposeful approach to selection of samples containing not only olivine inclusions that have been extensively studied in the most recent years after the publication of the book Carbon in Earth (2013). The present collection accounts for more than 25% of all samples studied across the world and includes the most typical mineral inclusions of the predominant peridotitic paragenesis in almost all known kimberlites. Both this experiment and similar studies conducted by foreign colleagues in 2014-2019 have found no inclusions whose orientation meets the epitaxial criterion. Only single magnesiochromite inclusions in three diamonds demonstrate an orientation close to the regular one. A significant correlation between the carbon isotope composition and the mineral composition of inclusions of peridotitic and eclogitic paragenesis diamonds as well as the lack of a correlation with other properties may be considered one of the geochemical features. However, given the numerous published and proprietary data demonstrating the complex diamond growth history and, in some cases, wide variations in the composition of mineral inclusions in different zones, along with the difference in their morphology, the authors a believe that syngenetic and protogenetic inclusions can coexist in the same diamond. This is also confirmed by the discoveries of diamondiferous peridotite and eclogite xenoliths in kimberlites where diamonds are completely enclosed in garnet or olivine. Of particular note is the constant presence of heavy hydrocarbons (rel.%), from pentane (C5H12) to hexadecane (C16H34), that are predominant in fluid inclusions in kimberlite and placer diamonds as well as in pyrope and olivine of diamondiferous peridotite xenoliths.
DS202102-0216
2021
Pavlushkin, A., Zedgenizov, D., Vasilev, E., Kuper, K.Morphology and genesis of ballas and ballas-like diamonds.MDPI Crystals, Vol. 11, 17 dx.doi.org/ 103390/ Qcrystal11010017 24p. PdfRussia, Yakutia, Urals, South America, Brazildeposits - Mir, Udachnaya, Aikal, Yubilenya

Abstract: Ballas diamond is a rare form of the polycrystalline radial aggregate of diamonds with diverse internal structures. The morphological features of ballas diamonds have experienced repeated revision. The need that this paper presents for development of a crystal-genetic classification was determined by a rich variety of combined and transitional forms of ballas-like diamonds, which include aggregates, crystals, and intergrowths. The new crystal-genetic classification combines already-known and new morphological types of ballas as well as ballas-like diamonds discovered in the placers of Yakutia, the Urals, and Brazil. The ballas-like diamond forms include spherocrystals, aggregates with a single crystal core, split crystals, radial multiple twin intergrowths, and globular crystals. The crystal genetic scheme of the evolution of ballas and ballas-like diamonds is a sequence of the morphological types arranged in accordance with the conventional model of the dependence of the mechanism and diamond growth from carbon supersaturation developed by I. Sunagawa. The evolution of the growth forms of ballas and ballas-like diamonds was tracked based on the macrozonal structure of diamonds varying from a flat-faced octahedron to a fibrous cuboid with its transition forms to the radiating crystal aggregates. The morphological diversity of the ballas-like diamonds depends on the level of supersaturation, and abrupt changes of the level of supersaturation engender abrupt changes in a mechanism of crystal growth. The change in the rate of growth under the influence of adsorption and absorption of the mechanic impurities accompanied the sudden appearance of the autodeformation defects in the form of splitting and multiple radial twinning of crystals. The spherical shape of Yakutia ballas-like diamonds is due to the volumetric dissolution that results in the curved-face crystals of the "Urals" or "Brazilian" type associated with ballas diamonds in placers.
DS202108-1304
2021
Peace, A.L.Beyond ' crumple zones': recent advances, application and future directions in deformable plate tectonic modeling.Geological Magazine, doi:10.1017/S0016756821000534 7p.Mantleplate tectonics

Abstract: The recent proliferation of deformable plate tectonic modelling techniques has provided a new direction in the study of plate tectonics with substantial implications for our understanding of plate deformation and past kinematics. Such models account for intraplate deformation, yet are highly variable in their inputs, capabilities and applications. The aim of this commentary is to review recent contributions to this topic, and to consider future directions and major omissions. Through this review it is apparent that the current published deformable models can be subdivided into those that as an input either: (1) solely use plate motions to drive deformation, or (2) require stretching or beta factor. Deformable models are resolving some outstanding issues with plate reconstructions, but major simplifications and modelling assumptions remain. Primarily, obtaining model constraints on the spatio-temporal evolution of deformation is an outstanding problem. Deformable plate models likely work best when the kinematics of smaller plates are included. However, questions remain regarding how to define such blocks, and their kinematic histories, whilst some work suggests that inclusion of such entities is negated through quantitative restorations.
DS202104-0598
2021
Pearson, D.G., Li, D., Xu, Y., Liu, S-A., Chu, Z., Chen, L-H., Li, S.Oxidation of the deep mantle wedge by recycled carbonates: constraints from highly siderophile elements and osmium isotopes.Geochimica et Cosmochimica Acta, Vol. 295, pp. 207-223.Chinanephelinites, basanites

Abstract: Widespread Cenozoic intraplate basalts from eastern China offer the opportunity to investigate the consequences of interaction between the stagnant Pacific slab and overlying asthenosphere and chemical heterogeneity within this “big mantle wedge”. We present and compile a comprehensive study of highly siderophile elements and Mg-Zn isotopes of this magmatic suite (60 samples including nephelinites, basanites, alkali basalts and tholeiites). The large-scale Mg-Zn isotopic anomalies documented in these basalts have been ascribed to mantle hybridization by recycled Mg-carbonates from the stagnant western Pacific plate. Our results reveal that the nephelinites and basanites are characterized by unfractionated platinum-group element (PGE) patterns normalized to primitive upper mantle (PUM) (e.g., PdN/IrN normalized to PUM?=?1.1?±?0.8, 1?), relatively high total PGE contents (e.g., Ir?=?0.25?±?0.14?ppb) and modern mantle-like 187Os/188Os (0.142?±?0.020). These characteristics are coupled with lighter Mg isotope (?26Mg?=??0.48?±?0.07‰) and heavier Zn isotope (?66Zn = +0.46?±?0.06‰) compositions compared to the mantle values (?26Mg: ?0.25?±?0.07‰; ?66Zn: +0.18?±?0.05‰). Together, these data are interpreted to reflect the oxidative breakdown of low proportions of mantle sulfides in the sources of these small-degree melts, likely caused by recycled carbonates, which then release chalcophile-siderophile elements into carbonatitic melts. By contrast, the contemporaneous alkali basalts and tholeiites are characterized by highly fractionated PGE patterns (e.g., PdN/IrN?=?4.4?±?3.3; Ir?=?0.037?±?0.027?ppb) and radiogenic 187Os/188Os (0.279?±?0.115) coupled with less fractionated Mg-Zn isotope compositions (?26Mg: ?0.39?±?0.05‰; ?66Zn: +0.35?±?0.03‰). In combination with other isotopic (e.g., Sr-Nd) and chemical (SiO2, Ce/Pb, Ba/Th, Fe/Mn) constraints, the alkali basalts and tholeiites were derived from higher degree melting of ancient pyroxenite-bearing mantle in addition to mixing with the aforementioned nephelinitic and basanitic melts. Collectively, we suggest that deep recycled carbonates promoted melting within the "big mantle wedge" leading to the generation of Cenozoic intraplate basalts across eastern China and the "redox freezing of carbonates" may cause the oxidation of Fe0 and S2-. This process may provide an important mechanism to oxidize mantle sulfides and transfer precious metals from deep mantle to crust.
DS202109-1484
2021
Pearson, D.G., Scott, J.M., Liu, J., Schaeffer, A., Wang, L.H., van Hunen, J., Szilas, K., Chacko, T., Kelemen, P.B. Deep continental roots and cratons.Nature, Vol. 596, pp. 199-210. pdfGlobalcratons

Abstract: The formation and preservation of cratons-the oldest parts of the continents, comprising over 60 per cent of the continental landmass-remains an enduring problem. Key to craton development is how and when the thick strong mantle roots that underlie these regions formed and evolved. Peridotite melting residues forming cratonic lithospheric roots mostly originated via relatively low-pressure melting and were subsequently transported to greater depth by thickening produced by lateral accretion and compression. The longest-lived cratons were assembled during Mesoarchean and Palaeoproterozoic times, creating the stable mantle roots 150 to 250 kilometres thick that are critical to preserving Earth’s early continents and central to defining the cratons, although we extend the definition of cratons to include extensive regions of long-stable Mesoproterozoic crust also underpinned by thick lithospheric roots. The production of widespread thick and strong lithosphere via the process of orogenic thickening, possibly in several cycles, was fundamental to the eventual emergence of extensive continental landmasses-the cratons.
DS202104-0599
2021
Pearson, G.Exploring for diamonds and what they tell us about how the Earth works. *** April 29Carnegie Institute Lecture April 29, 6.30 pm est, Please click this URL to join.Globaldiamond genesis

Abstract: Finding and evaluating diamond deposits is one of the hardest tasks in mineral resource development. In this talk, we will delve a little into the techniques used to find diamonds and how to evaluate the deposits. We will then examine why diamonds-the deepest derived of all natural materials—are unique in their ability to illuminate processes taking place over 700 km beneath Earth's surface, and up to 3.5 billion years back into its history. Click to register for Upcoming April 29, 2021 Webinar.
DS202105-0782
2021
Pearson, G.D.Exploring for diamonds and what they tell us about how the Earth works. April 29Carnegiescience.edu, https://youtu.be /23M235RKAqA Globaldiamond genesis

Abstract: Finding and evaluating diamond deposits is one of the hardest tasks in mineral resource development. In this talk, we will delve a little into the techniques used to find diamonds and how to evaluate the deposits. We will then examine why diamonds-the deepest derived of all natural materials-are unique in their ability to illuminate processes taking place over 700 km beneath Earth's surface, and up to 3.5 billion years back into its history.
DS202106-0964
2021
Perchuk, A.L., Sapegina, A.V., Safonov, O.G., Yapaskurt, V.O., Shatsky, V.S., Malkovets, V.G.Reduced amphibolite facies conditions in the Precambrian continental crust of the Siberian craton recorded by mafic granulite xenoliths from the Udachnaya kimberlite pipe, Yakutia.Precambrian Research, Vol. 357, 1061022, 14p. PdfRussia, Yakutiadeposit - Udachnaya

Abstract: It is widely accepted that granulite xenoliths from kimberlites provide a record of granulite facies metamorphism at the basement of cratons worldwide. However, application of the phase equilibria modeling for seven representative samples of mafic granulites from xenoliths of the Udachnaya kimberlite pipe, Yakutia, revealed that a granulitic garnet + clinopyroxene + plagioclase ± orthopyroxene ± amphibole ± scapolite mineral assemblage was likely formed in the middle crust under amphibolite facies conditions (600-650 °C and 0.8-1.0 GPa) in a deficiency of fluid. Clinopyroxene in the rocks is characterized by elevated aegirine content (up to 10 mol.%) both in the earlier magmatic cores and in the later metamorphic rim zones of the grains. Nevertheless, the phase equilibrium modeling for all samples indicates surprisingly reduced conditions, i.e. oxygen fugacity 1.6-3.3 log units below the FMQ (Fayalite-Magnetite-Quartz) buffer. In contrast, the coexistence of Fe-Ti oxides indicates temperatures of 850-990 °C and oxygen fugacity about lg(FMQ) ± 0.5, conditions which correspond to earlier stages of rock evolution. Reduction of oxygen fugacity during cooling is discussed in the context of the evolution of a complex fluid. The reconstructed P-T conditions for the final equilibration in the mafic granulites indicate that temperatures were ~250 °C higher than those extrapolated from the continental conductive geotherm of 35-40 µW/m2 deduced from peridotite xenoliths of the Udachnaya pipe. Although the granulites resided in the crust for a period for at least 1.4 Ga, they did not re-equilibrate to the temperatures of the geotherm, likely due to the blocking of mineral reactions under relatively low temperatures and fluid-deficient conditions
DS202110-1633
2021
Persaud, S., Galati, A., Johnson, P.Colorful inclusions in diamond.Gems & Gemology, Vol. 57, 2, pp. 158-159. gia.edu/gems-gemologyUnited States, Californiadiamond inclusions
DS202101-0027
2020
Pessano, P.C., Ganade, C.E., Tupinamba, M., Teixeira, W.Updated map of the mafic dike swarms of Brazil based on airborne geophysical data.Journal of South American Earth Sciences, in press available, 16p. PdfSouth America, Brazilgeophysics

Abstract: Identification of mafic dike swarms and LIPs (Large Igneous Provinces) are of vital importance in geologic history because they provide information on geodynamics, mantle geochemistry, and paleomagnetism. These data provide key information for paleogeographic reconstructions with the aid of barcode matches and precise radiometric ages. Considering such issues, the Brazilian Precambrian shield can be used as a case for refining the cartography of the relevant intraplate activity (e.g., dikes, sills, flood basalts) in space and time. This work presents an updated map of Brazilian mafic dike swarms produced from airborne geophysical maps (Series 1000 - Geological Survey of Brazil). Linear and strong anomalies found on aeromagnetic maps using First Vertical Derivative of the Magnetic Field and Amplitude of the Analytic Signal were mapped on a GIS platform. The obtained data were compared to ternary radiometric maps and geological maps in order to exclude those that do not correspond to mafic dikes. The remaining structures - those believed to represent mafic dikes - were classified based on data compiled from the literature. The updated map exhibits more than 5000 elements, including dikes and magmatic suites, in which about 75% were geologically identified and divided into 60 dike swarms and 10 igneous suites and/or units. The dikes were grouped into sixteen extensional episodes from the Archean to the Cenozoic, although some are related to extension/transtension domains within regional compressive zones akin to orogenic settings. The most frequent records refer to the Proterozoic, representing intraplate episodes, some of them consistent with LIPs. The dataset also includes a large record of the Mesozoic age, which corresponds to major LIP events related to the opening of the Atlantic Ocean and the fragmentation of Gondwana.
DS202111-1780
2021
Peters, S.E., Walton, C.R., Husson, J.M., Quinn, D.P., Shorttle, O., Keller, C.B., Gaines, R.R.Igneous rock area and age in continental crust.Geology, Vol. 49, pp. 1235-1239. pdfGlobalgeochronology

Abstract: Rock quantity and age are fundamental features of Earth's crust that pertain to many problems in geoscience. Here we combine new estimates of igneous rock area in continental crust from the Macrostrat database (https://macrostrat.org/) with a compilation of detrital zircon ages in order to investigate rock cycling and crustal growth. We find that there is little or no decrease in igneous rock area with increasing rock age. Instead, igneous rock area in North America exhibits four distinct Precambrian peaks, remains low through the Neoproterozoic, and then increases only modestly toward the recent. Peaks in Precambrian detrital zircon age frequency distributions align broadly with peaks in igneous rock area, regardless of grain depositional age. However, detrital zircon ages do underrepresent a Neoarchean peak in igneous rock area; young grains and ca. 1.1 Ga grains are also overrepresented relative to igneous area. Together, these results suggest that detrital zircon age distributions contain signatures of continental denudation and sedimentary cycling that are decoupled from the cycling of igneous source rocks. Models of continental crustal evolution that incorporate significant early increase in volume and increased sedimentation in the Phanerozoic are well supported by these data.
DS202104-0600
2020
Petrovskii, M.N.Rare earth minerals from carbonatite veins in the Soustov pluton, Kola Peninsula, as an indicator of its ore specialization.Geology of Ore Deposits, Vol. 62, 8, pp. 754-763. pdfRussia, Kola PeninsulaREE

Abstract: This paper presents the results of the first geological, isotope, geochemical, and mineralogical study of carbonatite veins that were previously unknown in the Soustov pluton. The studied veins are similar in the Sm-Nd isotope composition and model age to the host rocks, which implies a common formation processs. High contents of light lanthanides, Sr, and Nb in carbonatite veins were measured. These elements are concentrated in bastnäsite, strontianite, monazite, and pyrochlore. These data significantly enlarge our concepts of the geochemical and ore specialization of the massif.
DS202103-0399
2021
Piccolo, A., Kaus, B.J.P., White, R.W., Palin, R.M., Reuber, G.S.Plume - Lid interactions during the Archean and implications for the generation of early continental terranes.Gondwana Research, Vol. 88, pp. 150-168. 19p. PdfMantlegeodynamics

Abstract: Many Archean terranes are interpreted to have a tectonic and metamorphic evolution that indicates intra-crustal reorganization driven by lithospheric-scale gravitational instabilities. These processes are associated with the production of a significant amount of felsic and mafic crust, and are widely regarded to be a consequence of plume-lithosphere interactions. The juvenile Archean felsic crust is made predominantly of rocks of the tonalite-trondhjemite-granodiorite (TTG) suite, which are the result of partial melting of hydrous metabasalts. The geodynamic processes that have assisted the production of juvenile felsic crust, are still not well understood. Here, we perform 2D and 3D numerical simulations coupled with the state-of-the-art of petrological thermodynamical modelling to study the tectonic evolution of a primitive Archean oceanic plateau with particular regard on the condition of extraction of felsic melts. In our numerical simulations, the continuous emplacement of new, dry mafic intrusions and the extraction of the felsic melts, generate an unstable lower crust which drips into the mantle soon after the plume arrival. The subsequent tectonic evolution depends on the asthenosphere TP. If the TP is high enough (? 1500 ?C) the entire oceanic crust is recycled within 2 Myrs. By contrast at low TP, the thin oceanic plateau slowly propagates generating plate-boundary like features.
DS202101-0028
2020
Pilchin, A.N., Eppelbaum, L.V.Plate tectonics and Earth evolution: a conceptual review.ANAS Transactions, Earth Sciences, Vol. 2, pp. 3-32. pdf doi: 10.33677 /ggianas20200200043Mantlegeodynamics

Abstract: Numerous attempts have been made to understand the rules of Earth’s tectono-geodynamic processes over the past centuries. While no paradigm has offered comprehensive answers to all of the questions, the present review aims to acquaint readers with the modern state of developments in the tectonic insights of Earth's evolution. A number of very interesting and unique processes and features took place during the evolution of early Earth. Most of these, however, were largely erased over the course of Earth’s ensuing evolution; some leaving only traces of their existence and some remnant phenomena, especially those taking place in the Hadean and Early to Late Archean. Among such processes and features are: the planetary accretion of Earth, formation of unique rock complexes, initiation of the plate tectonics phenomenon, main forces driving plate tectonics, significant influence of thermal parameters, role of overpressure under different physical-geological environments, stratification of Earth's crust and lithosphere by density, and various other thermodynamic models. Nearly all of these remain enigmatic, due to considerable uncertainty in the timing and methods of their evolution, and the ambiguity of their secondary processes and tectono-geophysical indicators. At the same time, majority of tectono-geodynamic processes and features are also interrelated, and the simultaneous fluctuation of myriad different factors played a significant role in their influence to the geological medium. Some of these intricate questions are discussed in this paper. For instance, what is the role of the plate tectonics phenomenon and when did this process initiate on Earth? Especial attention is paid in the review to the sophisticated methods of understanding tectonic processes over the course of various generations of geoscientists. In the conducted analyses, certain physical data derived from other planets of the Solar System were utilized as well.
DS202105-0783
2021
Podolsky, M.Primary asset development standard model - deposit to reserve desktop to feasibility governance - example Gahcho Kue mine, Northwest Territories, Canada.Vancouver Kimberlite Cluster recorded,  https://youtu.be/ GMyoKHoQrJECanada, Northwest Territoriesdeposit - Gahcho Kue

Abstract: A primary rock-hosted diamond Deposit to Reserve Asset Development Standard model governed under the 2014 Canadian Institute of Mining, Metallurgy and Petroleum definition standards on Mineral Resources and Reserves and 2016 Toronto Stock Exchange National Instrument 43-101 - Standards of Disclosure for Mineral Projects, is presented and discussed. The Gahcho Kué Mine De Beers Canada - Mountain Province Diamonds joint venture project roadmap from exploration commencing in 1992 to definitive Feasibility Study in 2010 is reviewed under the incorporated 2003 Guidelines for the Reporting of Diamond Exploration Results and 2008 Estimation of Mineral Resources and Mineral Reserves Best Practices Guidelines for Rock Hosted Diamonds. Karowe and Ekati-Sable diamond mines histories are also compared. The Asset Development Standard model utilizes a published De Beers system of kimberlite Deposit to Reserves geo-scientific scorecard classification, that is aligned with reporting of Desktop, Conceptual and Pre-Feasibility to Feasibility Studies.
DS202107-1123
2021
Pokhilenko, L.Kelphite rims on garnets of contrast parageneses in mantle xenoliths from the Udachnaya-East kimberlite pipe ( Yakutia).Minerals MDPI, Vol. 11, 615 29p. PdfRussia, Yakutiadeposit - Udachnaya-East

Abstract: A new classification of kelyphitic rims on garnets from xenoliths of peridotitic and eclogitic parageneses of the mantle section under the Udachnaya-East kimberlite pipe (Yakutia) is presented. Five types of rims are identified: Rim1 develops between garnet and olivine/pyroxene (or rim2) and is composed of high-alumina pyroxenes, spinel, phlogopite; rim2, the coarse grain part of rim1, is located between rim1 and olivine/pyroxene, and mainly consists of phlogopite and less aluminous larger pyroxenes and spinel; rim3 develops between garnet and kimberlite, and presents with phlogopite and Fe-Ti spinel; rim4 sometimes presents instead of rim1/rim2 and consists of zoned high-Cr phlogopite with rare fine grains of chromium spinel; rim5, a “pocket” between garnet and rim1, is represented by microcrystalline aggregates of clinopyroxene, mica, spinel, calcite, and feldspar in different variations. Rims 1, 2, and 3 are typical for garnets of all studied parageneses. Rims 4 and 5 develop on high-Cr subcalcic garnets of the most depleted peridotites. Reactions of the formation of all types of rims are given in the article. Each type of kelyphite demonstrates a clear enrichment with a certain component: Rim1—MgO and alkalis; rim2—TiO2; rim3—FeO and TiO2; rim4—Cr2O3; and rim5—CaO, suggesting the multistage injection of different components by mantle fluid.
DS202103-0400
2021
Popov, M., Bondarenko, M., Kulnitskiy, B., Zholudev, S., Blank, V., Terentyev, S.Impulse laser cutting of diamond accompanied by phase transitions to fullerene -type onion.Diamond & Related Materials, Vol. 113, 108281, 6p. PdfGlobalraman spectroscopy
DS202105-0784
2021
Presser, J.Lampoites in Leucite HillsLinkedin, https://www.linkedin.com/ posts/jaime-l-b-presser -179a0415_and-the-paleo- volcanoes-of-lamproites -in-activity-6781902573 998759936-4fEnUnited States, Wyominglamproite
DS202102-0217
2021
Presser, J.B.Lamproites of the Kaapvaal type, two reference mines: Finch with 59.9 cpht and Dokolwayo with 30 cpht. Others …..https://www.linkedin.com/in/jaime-I-b-presser, Jan. 7, 8p. Africa, South Africa, Australia, South America, Paraguaylamproite
DS202101-0029
2020
Presser, J.L.B.Peridotite geotherms of the Rio de la Plata craton-archon core. *** in EngHistoria Natural , Vol. 10, 3, pp. 5-10. pdfSouth Americageothermometry

Abstract: At the Rio de la Plata Craton archon-core environment were inferred, based on 1D Vs profiles (on 208 numbers of points), of the peridotitic geotherms. Values for the archon-core environment, it was estimated 38.5 to 40 mW/m2 in its central northern portion and southern portion and in its edges/southern portion 40 to 42 mW/m2. Geotherm values that allowed estimate LAB between 243 to 237 km depth (northern portion) and 225 to 213 km depth (southern portion). The same 1D Vs information allowed recognizing for this geothermal environment the depth of the graphite-to-diamond phase transition, finding that it is located at ~135 km. depth. So, projecting 70-90 Km. (southern portion) to 102-108 km. (northern portion) thickness of the “diamond window” for the Rio de la Plata craton archon-core. "Diamond window" thickness very close to those of the Kalahari archon craton where the highest grade of diamond deposit is the Kimberley with 200 cpht. Thus, it is estimated for eventual diamond deposit, in the Río de la Plata craton core, are quite similar to Kimberley diamond deposits could be also expected in the archon-core of Río de la Plata craton.
DS202107-1124
2021
Presser, J.L.B.Olie-2 ( Olivevenput) diamond-bearing pipe anomaly in Boshof district, South Africa. ( lamproites)Journal of Gems & Precious Metals, Vol. 1, 1 pp. 1-11. pdfAfrica, South Africadeposit - Loxtondal

Abstract: At the end of 2014, around the so called Loxtondal Orangeitic (now called Kaapval type lamproites) cluster, in Boshof district, two circular a nomalies (~540 to ~1100 meters in diameter) were identified by Landsat Satellite Images and interpreted as being of "kimberlites" pipes; probable anomaly which were referred to as Olie 1 and Olie 2. Subsequently, 100 kg of soil samples (horizon A/B) were taken for each of these anomalies. From them there was a high concentration of indicator minerals (IM): olivine, garnets (violets, reds and oranges), chromites, ilmenites, rutile, frosting tourmaline, zircon and among them some crystals of micro and macro diamonds. The high concentration of IM on Olie 2 led to focus the work on it . IM of Olie 2 was burned in HFl and by caustic fusion what contributed about 86 macro (<1 mm) and micro diamonds. The previus works contributed to raising the interest of some diamond geology groups that took new samples that provided electron microprobe analysis of hundreds of chromites and hundreds of garnets: chromites; picro-cromites, and G-9-G-10 garnets. The calculated pressure of the formation of chromites and garnets of Oli e 2 released in the information of seismic Vs-1D and tomography (Model TX2011). It would allow more adequately to reproduce these two minerals generated in the facies of diamonds and separate them from those generated in facies of graphite. A task that would allow a better approach to the diamond potential of this anomaly studied. It was found that in Olie 2 chromites of diamond facies and garnets (G 9 and G 10) are very representative. For this time the study of the lithospheric cratonic mantle (Archon), through of the commented seismic Vs-1D and tomography (Model TX2011) on the Loxtondal cluster (Olie-2)/Kimberley-area setting allowed to estimate the surface heat flow as being approximately 37.5 mW/m2 = 280 km depth of cratonic root (or LAB). Environment in which the highest reference diamond grade is the Kimberley pipe with 200 cpht; and so, for this reason, a similar diamonds-grade could be expected on the Olie-2/potential associated pipes-area.
DS202101-0030
2020
Presser, J.L.B., Benitez, P.Eclogitic geotherms of the Rio de la Plata craton archon-core: Estancia Trementina and Puentesino, Dpto. Of Concepion - Paraguay. Compared to two large diamond deposits Argyle ( lamproitic) and Orapa ( Kimberlitic).Linked in, 20p. PdfSouth America, Paraguaygeothermometry
DS202108-1305
2021
Presser, J.L.B., Benitez, P.Geophysical constraints of the Rio de la Plata archon craton.Historia Natural, Vol. 11, 2, pp. 17-37. pdfSouth America, Paraguaygeophysics
DS202108-1306
2021
Presser, J.L.B., Benitez, P.Eclogitic geotherms of the Rio de la Plata craton archon-core. Estancia Trementina and Puentesino, DPTO. Of Concepcion - Parauay. Compared of two large diamond deposits Argyle ( lamproitic ) and Orapa ( kimberlitic).Historia Natural, Vol. 11, 2, pp. 5-16. pdfSouth America, Paraguay, Australia, Africa, Botswanadeposit - Argyle, Orapa
DS202103-0401
2021
Priestley, K., Ho, T., McKenzie, D.The formation of continental roots.Geology, Vol. 49, pp. 190-194. pdfMantlegeophysics, seismics, tomography

Abstract: New evidence from seismic tomography reveals a unique mineral fabric restricted to the thick mantle lithosphere beneath ancient continental cratons, providing an important clue to the formation of these prominent and influential features in Earth’s geological history. Olivine, the dominant mineral of Earth’s upper mantle, has elastic properties that differ along its three crystallographic axes, and preferential alignment of individual olivine grains during plastic deformation can affect the bulk nature of seismic-wave propagation. Surface-wave tomography has shown that over most of Earth, deformation of the mantle lithosphere has oriented olivine crystals with the fast axis in the horizontal plane, but at depths centered at ?150 km within cratonic continental-lithosphere roots, the fast crystallographic axis is preferentially aligned vertically. Because of the high viscosity of the cratonic roots, this fabric is likely to be a vestige from craton formation. Geochemical and petrological studies of upper-mantle garnet-peridotite nodules demonstrate that the cratonic mantle roots are stabilized by their reduced density, which was caused by melt removal at much shallower depths than those from which the nodules were subsequently extracted. The mineral fabric inferred from surface-wave tomography suggests that horizontal shortening carried the depleted zone downward after the melt-depletion event to form the thick continental roots, stretching the depleted material in the vertical dimension by pure shear and causing the fast crystallographic axis to be aligned vertically. This seismological fabric at ?150 km is evidence of the shortening event that created the cratonic roots.
DS202104-0601
2021
Prokopyev, I.R., Doroshkevich, A.G., Zhumadilova, D.V., Starikova, A.E., Nugumanova, Ya.N., Vladykin, N.V.Petrogenesis of Zr-Nb ( REE) carbonatites from the Arbarastakh complex ( Aldan Shield, Russia): mineralogy and inclusion data.Ore Geology Reviews, Vol. 131, 104042, 15p. Pdf.Russiadeposit - Arbarastakh

Abstract: The Arbarastakh Neoproterozoic ultramafic carbonatite complex is located in the southwestern part of the Siberian Craton (Aldan Shield) and contains ore-bearing Zr-Nb (REE) carbonatites and phoscorites. Carbonatites are mainly represented by calcite and silicocarbonatite varieties. The primary minerals composing the carbonatites are calcite and dolomite, as well as phlogopite, clinopyroxene, fluorapatite, amphibole, fluorite, K-feldspar and feldspathoids. Olivine (forsterite), Ti-magnetite, apatite, phlogopite, calcite, dolomite and the minor spinel group minerals form the primary phoscorites. The ore-bearing Zr-Nb mineral assemblages of the phoscorites and carbonatites include accessory zircon, zirconolite, perovskite, pyrochlore and baddeleyite. The Ba-Sr-REE hydrothermal mineralisation consists of ancylite-(Ce), bastnaesite-(Ce) and burbankite, as well as barite-celestite, strontianite, barytocalcite, and rare Cu-Fe sulphides. The silicocarbonatites and carbonatites formed in multiple stages from a single alkaline Ca-Na-K-silicocarbonatite melt, while the phoscorites are products of differentiation of the carbonatitic melt and were crystallised from an Fe-rich phosphate-carbonate melt at temperatures of more than 720 °C. The silicate-phosphate-carbonate melts were responsible for the Zr-Nb mineralisation of the carbonatites at temperatures of more than 540-575 °C; the hydrothermal REE-bearing mineral assemblages crystallised from saline (60-70 wt%) carbonatitic fluids of Na-Ca-Mg-F-carbonate composition at a minimum temperature range of 350-300 °C. The Ca-Sr-carbonate as well as the Na-hydro-carbonate fluids were responsible for the Ba-Sr-REE mineralisation of the phoscorites at ~500-480 and 450-430 °C.
DS202110-1634
2021
Proskumin, V.F., Grakhanov, S.A., Petrov, O.V., Vasiliev, E.A., Berzon, E.I., Antonov, A.V., Sobolev, N.V.Forecast of the diamond potential of Taimyr.Doklady Earth Sciences, Vol. 499, 2, pp. 611-615.Russiadeposit - Taimyr

Abstract: Although irrefutable evidence for the presence of signs of diamondiferous kimberlite on the Taimyr Peninsula were obtained in the 1930s, it was only in 2020 that a macrodiamond (>1 mm) was first discovered in Eastern Taimyr. This was a colorless laminar crystal of a transitional shape from an octahedron to a rhombododecahedron. According to the set of features, the crystal is rare and atypical of the known primary and alluvial deposits of the Siberian Diamond Province. The find of this diamond indicates the presence of primary sources and the need for medium-scale geological survey and exploration over a large area from Anabar Bay (Pronchishchev Ridge) to the west to the Kiryaka-Tas and Tulai-Kiryaka highlands and to the northeast to Tsvetkov Cape.
DS202106-0965
2021
Pujol-Sola, N., Dominguez-Carretero, D., Proenza, J.A., Haissen, F., Ikenne, M., Gonzales-Jiminez, J.M., Colas, V., Maacha, L., Garcia-Casco, A.The chromitites of the Neoproterozoic Bou Azzer ophiolite ( central Anti-Atlas, Morocco) revisited.Ore Geology Reviews, Vol. 134, 104166, 24p. PdfAfrica, Moroccomoissanite

Abstract: The Neoproterozoic Bou Azzer ophiolite in the Moroccan Anti-Atlas Panafrican belt hosts numerous chromitite orebodies within the peridotite section of the oceanic mantle. The chromitites are strongly affected by serpentinization and metamorphism, although they still preserve igneous relicts amenable for petrogenetic interpretation. The major, minor and trace element composition of unaltered chromite cores reveal two compositional groups: intermediate-Cr (Cr# = 0.60 - 0.74) and high-Cr (Cr# = 0.79 - 0.84) and estimates of parental melt compositions suggest crystallization from pulses of fore-arc basalts (FAB) and boninitic melts, respectively, that infiltrated the oceanic supra-subduction zone (SSZ) mantle. A platinum group elements (PGE) mineralization dominated by Ir-Ru-Os is recognized in the chromitites, which has its mineralogical expression in abundant inclusions of Os-Ir alloys and coexisting magmatic laurite (RuS2) and their products of metamorphic alteration. Unusual mineral phases in chromite, not previously reported in this ophiolite, include super-reduced and/or nominally ultra-high pressure minerals moissanite (SiC), native Cu and silicates (oriented clinopyroxene lamellae), but “exotic” zircon and diaspore have also been identified. We interpret that clinopyroxene lamellae have a magmatic origin, whereas super-reduced phases originated during serpentinization processes and diaspore is linked to late circulation of low-silica fluids related to rodingitization. Zircon grains, on the other hand, with apatite and serpentine inclusions, could either have formed after the interaction of chromitite with mantle-derived melts or could represent subducted detrital sediments later incorporated into the chromitites. We offer a comparison of the Bou Azzer chromitites with other Precambrian ophiolitic chromitites worldwide, which are rather scarce in the geological record. The studied chromitites are very similar to the Neoproterozoic chromitites reported in the Arabian-Nubian shield, which are also related to the Panafrican orogeny. Thus, we conclude that the Bou Azzer chromitites formed in a subduction-initiation geodynamic setting with two-stages of evolution, with formation of FAB-derived intermediate-Cr chromitites in the early stage and formation of boninite-derived high-Cr chromitites in the late stage.
DS202109-1485
2021
Qiu, Y., Guo, Y.Explaining colour change in pyrope-spessartine garnets.MDPI Minerals, Vol. 11, 11080865 15p. PdfglobalFTIR

Abstract: A colour-changing garnet exhibits the "alexandrite effect", whereby its colour changes from green in the presence of daylight to purplish red under incandescent light. This study examines this species of garnets as well as the causes of the colour change by using infrared and ultraviolet visible (UV-Vis) spectroscopy. The infrared spectra show that the colour-changing garnets in this paper belong to the solid solution of pyrope-spessartine type. CIE1931 XYZ colour matching functions are used to calculate the colour parameters influencing garnet colour-changing under different light sources. The UV-Vis spectra show two zones of transmittance, in the red region at 650-700 nm and the blue-green region at 460-510 nm. As they exhibit the same capacity to transmit light, the colour of the gem is determined by the external light source. The absorption bands of Cr3+ and V3+ at 574 nm in the UV-Vis spectra are the main cause of the change in colour. With the increase in the area of peak absorption, the differences in the chroma and colour of the garnet gradually increase in daylight and incandescent light, and it exhibits a more prominent colour-changing effect.
DS202105-0785
2021
Rabinowitz, Y., Etinger, A., Litvak, B., Yahalom, A., Cohen, H., Pinhasi, Y.Millimeter wave spectroscopy for evaluating diamond color grades.Diamond & Related Materials, Vol. 116, 108386 10p. PdfGlobalspectroscopy

Abstract: One of the most important parameters affecting the value of natural colorless diamonds is its light transparency, defined as its color grade. The regular range of color grades in the trade is denoted by alphabet letters in the range D-M, where D represents the best commercial quality. The color grade of diamonds is largely influenced by their nitrogen content (when nitrogen atoms substitute carbon atoms in the crystal) and can be determined from this property. Diamonds absorb electromagnetic radiation in the UV-visible as well as in the Infrared spectral range and therefore, their color grade is measured via spectroscopic light absorption in these frequency range. The electromagnetic properties of different polished diamonds having several nitrogen concentrations in the frequency range of 100-110 GHz (W band) have been studied. The results indicate that there is a good correlation between the amount of nitrogen impurities and the Free Spectral Range (FSR) parameter of a reflection signal, S11, in the antenna. From the study It is concluded that measuring the diamonds dielectric properties via spectroscopic analysis in the millimeter wavelength range, can determine the color grading. In addition, the FSR measurements were correlated well with the FTIR measurements. The methodology of the new color determination mode and a novel color estimate, based on the FSR vs the nitrogen correlation, has been tested on 26 diamonds with a success rate higher than 70%.
DS202109-1486
2021
Ragozin, A.I., Agashev, A.M., Zedgenizov, D.A., Denisenko, A.A.Evolution of the lithospheric mantle beneath the Nakyn kimberlite field: evidence from garnets in the peridotite xenoliths of the Nyurba and Botuoba pipes.Geochemistry International, Vol. 59, 8, pp. 743-756. pdfRussia, Siberiadeposit - Nyurba, Botuoba

Abstract: The paper presents data on garnets from serpentinized peridotite xenoliths in the Nyurba and Botuoba kimberlite pipes of the Nakyn kimberlite field. The major and trace-element compositions of the garnets were analyzed to determine their compositional specifics and genesis. Based on the REE content and chondrite-normalized distribution patterns, the garnets are divided into two types with sinusoidal ((Sm/Er)n > 1) and normal ((Sm/Er)n < 1) REE distribution patterns. In terms of the Y, Zr, Ti, and Eu relations, and the shape of REE distribution pattern, all the garnets correspond to garnets of metasomatized peridotites, except for one sample falling into the field of depleted garnets of harzburgite-dunite paragenesis. The geochemical characteristics of the garnets record two types of metasomatic agents: carbonatite/fluid for type 1 garnets and silicate/melt for type 2 garnets. The carbonatite metasomatic agent produced harzburgitic garnet and its further transformation into lherzolitic garnet. Silicate metasomatism, which led to the formation of the REE pattern of type 2 garnets, likely overprinted two different types of garnets and, respectively, gave two evolutionary trends. These are depleted residual garnets and type 1 garnets previously subjected to carbonatite metasomatism. The low Y and Th contents in combination with the low Ti/Eu ratios in garnets suggest a moderate reworking of lithospheric peridotites by silicate melts, which is consistent with the high diamond grade of the Nakyn kimberlite field.
DS202104-0602
2021
Ramokgaba, L., Le Roex, A., Robey, J.Phlogopite-rich and phlogopite-poor kimberlite intrusions within the Du Toitspan kimberlite pipe, South Africa: petrogenetic relationships and localised source heterogeneity.Lithos, in press available, 35p. PdfAfrica, South Africadeposit - Du Toitspan

Abstract: Samples from three petrographically distinct, intrusive kimberlite bodies and associated kimberlite dykes from the eastern lobe of the Du Toitspan kimberlite pipe, Kimberley, South Africa, have been analysed for their bulk rock major and trace element compositions and their olivine and phlogopite compositions. The two dominant intrusive bodies (D13, D14) are distinguished by the one (D13) being phlogopite-rich and best classified as a macrocrystic hypabyssal phlogopite kimberlite, and the other (D14) being phlogopite-poor and best classified as a macrocrystic hypabyssal monticellite kimberlite. The minor D17 intrusive body is classified as a macrocrystic transitional hypabyssal serpentinized phlogopite kimberlite. The associated kimberlite dykes range texturally from aphanitic to macrocrystic and are classified as calcite kimberlites. The major kimberlite intrusions and their associated dykes show no evidence of crustal contamination and are characterised by broadly overlapping geochemistry except for distinctly higher K2O (> 2?wt%) and Al2O3 (>3?wt%) and flattening HREE patterns (Gd/YbN?=?6.5-7.0) in the D13 - phlogopite kimberlite compared to the D14 - monticellite kimberlite and the calcite kimberlite dykes (Gd/YbN?=?9.6-12.1). These distinguishing geochemical features of the D13 - phlogopite kimberlite are comparable to typical Group II kimberlites in southern Africa. However, their diagnostic incompatible trace element ratios (for example, Th/Nb, La/Nb, Ce/Pb, and Ba/Nb) are instead comparable to other kimberlite intrusions analysed in this study and to southern African Group I kimberlites in general. Semi-quantitative modelling suggests that these kimberlite intrusions could have derived by low (<1%) degrees of partial melting of a source region that is enriched in LREE (Lan?=?~6.1; Ybn?~?1.47) comparable to metasomatised peridotites from the underlying lithospheric mantle. The composition of the D13 phlogopite kimberlite is consistent with a partial melt of a modally metasomatised source containing a higher proportion of residual clinopyroxene relative to garnet (compared to that giving rise to the D14 monticellite kimberlite and calcite kimberlite dykes), as well as accessory amounts of phlogopite, i.e. a garnet phlogopite peridotite (GPP). The absence of K-anomalies on primitive mantle normalized diagrams for the D13 phlogopite kimberlite requires that phlogopite was not a residual phase during partial melting and was exhausted shortly before or at the moment of melt segregation. The higher Gd/Yb ratios and lower K2O in the D14 monticellite kimberlite and calcite kimberlite dykes can be explained by partial melting of a cryptically metasomatized, phlogopite - free, garnet peridotite (GP) source, containing a higher proportion of garnet relative to clinopyroxene. The low absolute K and strong negative K-anomaly on primitive mantle normalized diagrams for the D14 monticellite kimberlite were inherited from a source region that previously experienced cryptic metasomatism by a differentiated fluid already carrying a negative K-anomaly.
DS202105-0786
2021
Razgulov, A.A., Lyanpin, S.G., Novikov, A.P., Ekimov, E.A.Low-temperature photoluminescence study of SnV centers in HPHT diamond.Diamond & Related Materials, Vol. 116, 108379 9p. PdfGlobaldiamond colours

Abstract: Here we report on the study of temperature shift and broadening of the zero phonon line (ZPL) of SnV center in HPHT microcrystalline diamond in the temperature range of 80-300 K. To separate contributions of lattice thermal expansion and electron-phonon coupling, the study of the pressure effect on the ZPL was conducted. A strong nonlinearity observed in the electron-phonon part of the ZPL temperature shift appeared to be in good agreement with well-known polynomial law ?E(T) = cT^2-dT^4 and, therefore, can be related to the effect of the strong softening of elastic springs.
DS202103-0402
2021
Regis, D., Pehrsson, S., Martel, E., Thiessen, E., Peterson, T., Kellett, D.Post - 1.9 Ga evolution of the south Rae craton ( Northwest Territories), Canada: a paleoproterozoic orogenic collapse system.Precambrian Research, Vol. 355, 106105, 29p. PdfCanada, Northwest Territoriessunduction

Abstract: The Trans-Hudson Orogen (THO), formed from the convergence between the Superior craton and the composite Churchill Upper Plate (CUP), is one of the best-preserved examples of a collisional orogen in the Paleoproterozoic. Similar to modern collision systems such as the Himalayan orogen, it is characterized by a composite upper plate in which terrane accretion established a continental plateau that was tectonically and magmatically active for >100 myr. Our study presents new petrological and geochronological data for four samples collected in three lithotectonic domains of the south Rae craton (one of the CUP terranes). The results presented here allow us to re-define the previously proposed extent of THO reworking in the CUP and afford the opportunity to study and compare the evolution of various fragments that illustrate differing levels of a collapsed plateau in the CUP hinterland. The new data indicate that the south Rae craton locally preserves evidence for burial at 1.855-1.84 Ga with peak metamorphic conditions at approximately 790 °C and 9.5-12.5 kbar followed by rapid cooling and decompression melting (P < 6 kbar) at ca. 1.835-1.826 Ga. These results, which provide important and so far missing Pressure-Temperature-time (P-T-t) constraints on the evolution of the south Rae craton in the Northwest Territories at Trans-Hudson time, coupled with existing regional geochronological and geochemical data, are used to propose an updated model for the post-1.9 Ga THO collision and extensional collapse. Our results reveal that: i) initial thickening in the upper plate started at Snowbird time (ca. 1.94 Ga), then continued via Sask collision (with high-grade metamorphism recorded in the south Rae craton, ca. 1.85 Ga), and ended with Superior collision (ca. 1.83 Ga); ii) the extent of the THO structural and metamorphic overprint in the SW CUP is much broader across strike than previously recognized, and iii) T-t data in the south Rae are indicative of relatively fast cooling rates (8-25 °C/Ma) compared to other known Precambrian orogens. We suggest that the Paleoproterozoic THO represents the first record of a major ‘modern-style’ orogenic plateau collapse in Earth’s history.
DS202109-1487
2021
Reguir, E.P., Salinkova, E.B., Yang, P., Chakmouradian, A.R., Stifeeva, M.V., Rass, I.T., Kotov, A.B.U-Pb geochronology of calcite carbonatites and jacupirangite from the Guli alkaline complex, Polar Siberia, Russia.Mineralogical Magazine, Vol. 85, 4, pp. 469-483.Russia, Siberiadeposit - Guli

Abstract: Mantle xenoliths from the Middle-Late Jurassic Obnazhennaya kimberlite are often compared with those from the Udachnaya kimberlite (ca. 367 Ma) to inform the evolution of the Siberia craton. However, there are no direct constraints on the timing of the Obnazhennaya kimberlite eruption. Such uncertainty of the kimberlite age precludes a better understanding of the mantle xenoliths from the Obnazhennaya pipe, and thus also of the evolution of the Siberia craton. This paper reports U-Pb ages for both perovskite from the Obnazhennaya kimberlite and rutile in an Obnazhennaya eclogite xenolith. The fresh perovskite formed during the early stage of magmatic crystallization and yields a U-Pb age of 151.8 ± 2.5 Ma (2?). Rutile in the eclogite xenolith yields an overlapping U-Pb age of 154.2 ± 1.9 Ma (2?). Because rutile has a Pb closure temperature lower than the inferred residence temperature of the eclogite prior to eruption, the U-Pb isotope system in rutile was not closed until the host eclogite was entrained and delivered to the surface by the kimberlite and therefore records the timing of kimberlite eruption. These data provide the first direct constraints on the emplacement age of the Obnazhennaya kimberlite and add to the global ‘kimberlite bloom’ from ca. 250-50 Ma as well as to the largest pulse of kimberlite volcanism in Siberia from ca. 171-144 Ma. The timing of this Jurassic-Cretaceous pulse coincides with the closure of the Mongol-Okhotsk Ocean, but the depleted Sr-Nd isotopic characteristics of 171-144 Ma kimberlites are inconsistent with a subduction-driven model for their petrogenesis. Thus, the closure of the Mongol-Okhotsk Ocean may act as a trigger for the initiation of 171-144 Ma kimberlite emplacement of Siberia, but was not the source.
DS202108-1307
2021
Reis, N.J., Cordani, U., Schobbenhaus, C., Maurer, V.C.New U-Pb age to the Pedra Pintada suite at the type-locality Roraima, Guiana Shield.CPRM, 1p. Abstract pdfSouth America, Venezuelacraton
DS202104-0603
2021
Renfro, N., Palke, A.Microfeatures of gems: geologic implications ( diamond and other gemstones)gia.org and knowledge session utube, 44266Globaldiamond inclusions

Abstract: Inclusions are more than imperfections or clarity characteristics. They can teach us much about gemstones’ journeys and reveal otherwise inaccessible information about Earth’s formation. What stories do diamond inclusions tell about Earth’s mantle? What do rutile needles and three-phase inclusions teach us about corundum and emerald, respectively? Follow Manager of Gem Identification Nathan Renfro and Senior Manager of Research Dr. Aaron Palke as they offer an up-close look into the microworld of gems and show us how this world reveals secrets about Earth’s geologic processes at large.
DS202108-1308
2021
Rey, T., Leone, F., Defossez, S., Gherardi, M., Parat, F.Volcanic hazards assessment of Oldoinyo Lengai in a data scarcity context.Territorium, Vol. 28, (II) pp. 69-81. pdfAfrica, Tanzaniadeposit - Oldoinyo Lengai

Abstract: The objective of our study is to establish an assessment of four volcanic hazards in a country threatened by the eruption of the OlDoinyo Lengai volcano. The last major eruption dates back to 2007-2008 but stronger activity in 2019 has revived the memory of volcanic threats to the Maasai and Bantu communities and human activities (agro-pastoral and tourism). The methods chosen have had to be adapted to the scarce and incomplete data. The volcanic hazards and their probability of occurrence were analysed on the basis of data available in the scientific literature and were supplemented by two field missions combining geography and hydro-geomorphology. Our study enabled us to map the hazards of ash fall, lava flows, lahars and avalanches of debris. Each hazard was spatialised by being ascribed an intensity. They are sometimes synchronous with the eruption sometimes they occur several months or years after a volcanic eruption. The results are the first step towards developing a volcanic risk management strategy, especially for the pastoral communities living around Lengai and for the growing tourist activities in this area.
DS202111-1781
2021
Rezende Fernandes, P., Tommasi, A., Vauchez, A., Pachero Neves, S., Nannini, F.The Sao Francisco cratonic root beneath the Neoproterozoic Brasilia belt ( Brazil): petrophysical data from kimberlite xenoliths.Tectonophysics, Vol. 816, 220011, 23p. PdfSouth America, Brazildeposit - Limeira-1, Indaia-1, Canastra-1

Abstract: Petrostructural analysis of 31 mantle xenoliths from three kimberlitic pipes intruding the Neoproterozoic Brasilia belt close to the southwestern margin of the São Francisco craton (SFC) reveals microstructures and compositions similar to those observed in cratonic roots worldwide. (1) The spinel-peridotites sampling the upper section of the lithospheric mantle have dominantly refractory modal and mineral compositions, whereas garnet-peridotites sampling the deep lithospheric mantle have more fertile compositions, consistent with those observed in cratonic roots worldwide. (2) The spinel-peridotites present a variation in microstructure from coarse-granular to coarse-porphyroclastic, but similar olivine crystallographic preferred orientations (CPO). (3) The garnet-peridotites have fine-porphyroclastic microstructures. (4) Many coarse-porphyroclastic spinel-peridotites display Fe-enrichment in olivine and pyroxenes, often associated with Ti-enrichment in pyroxenes or spinel and occurrence of modal phlogopite. (5) Equilibrium temperatures and pressures of garnet-peridotites are consistent with a cratonic geotherm, but equilibrium conditions of spinel-peridotites require a warmer geotherm. We interpret these observations as indicating that the xenoliths sample the SFC mantle root, which extends beneath the Brasilia belt, but was modified by reactive transport of the magmas forming the Alto Parnaiba Igneous Province (APIP) between 120 and 90 Ma. The APIP magmatism resulted in heterogeneous modal metasomatism, Fe enrichment, development of coarse-porphyroclastic microstructures in spinel peridotites and fine-porphyroclastic microstructures in garnet-peridotites, and moderate heating of the cratonic mantle root. These changes may produce a decrease in seismic velocities explaining the local weak negative anomaly observed in the lithospheric mantle beneath the APIP, which contrasts with the positive velocity anomalies characterizing the SFC mantle root in P-wave tomography models. However, reactive magma transport did not erase the olivine CPO. Comparison of the average seismic properties of the xenoliths with seismological data implies dominantly subhorizontal fossil flow directions and a non-negligible contribution of the cratonic root to teleseismic S-waves splitting.
DS202101-0031
2020
Rezvukhina, O.V., Korsakov, A.V., Rezvukin, D.I., Mikhailenko, D.S., Zamyatin, D.A., Greshnyakov, E.D., Shur, V.Y.Zircon from diamondiferous kyanite gneisses of the Kokchetav massif: revealing growth stages using an integrated cathodluminescence- Raman spectroscopy- electron microprobe approach.Mineralogical Magazine, in press 28p. https://doi.org /10.1180/mgm.2020.95RussiaKokchetav
DS202105-0787
2021
Rezvukhina, O.V., Skublov, S.G., Rezvukhin, D.I., Korsakov, A.V.Rutile in diamondiferous metamorphic rocks: new insight from trace element composition, mineral/fluid inclusions, and U-Pb-ID-TIMS dating.Lithos, Vol. 394-395, 7p. PdfRussia, Kazakhstandiamond inclusions

Abstract: This study highlights the usefulness of rutile when applied for reconstruction of the metamorphic evolution of ultrahigh-pressure rocks containing diamond. Within the diamondiferous kyanite gneiss (Kokchetav massif, Northern Kazakhstan), rutile shows three distinct textural positions: (i) rounded/irregular-shaped grains in the rock matrix; (ii) monomineralic inclusions in garnet, kyanite, quartz, and zircon; and (iii) grains in polyphase inclusions within garnet and kyanite porphyroblasts. High Nb (1990-3197 ppm) and relatively low Cr (404-703 ppm) concentrations in rutile indicate its metapelitic derivation. The Zr content in rutile varies from 480 to 798 ppm and the average temperature estimates yielded by the Zr-in-rutile geothermometer for 5 GPa are 880 °C. Rutile-hosted Zn-rich (up to 1.74 wt% ZnO) staurolite is interpreted as a record of the prograde metamorphic stage formed as a result of gahnite+pyrophyllite+diaspore breakdown at 0.3-0.8 GPa, 400-450 °C. Inclusions of diamond±CO2 ± carbonate±garnet in rutile originated near the peak of metamorphism (~5 GPa and ~ 880 °C). U-Pb ID-TIMS dating of a representative rutile separate yielded a concordant age of 519 ± 1.6 Ma that is younger than the previously estimated U-Pb crystallization ages of the peak metamorphic assemblages of the Kokchetav massif (528 ± 3 Ma). The obtained age represents the timing of cooling to the closure temperature for Pb diffusion in rutile (Tc; 420-640 °C). The cooling of the rocks from the peak temperatures to Tc occurred with the rates of 27-51 °C/Ma, whereas the exhumation rates (from 880 °C and 5 GPa to 420-640 °C and 0.5-1 GPa) were 1.3-1.5 cm/year. The peak temperature estimates as well as rapid cooling and exhumation rates reported here are in agreement with published data on zircon from similar diamondiferous Kokchetav gneisses. This work demonstrates that rutile provides a beneficial tool in studies dealing with reconstruction of the metamorphic evolution of diamondiferous rocks.
DS202103-0403
2021
Ribeiro da Costa, I., Roseiro, J., Figueiras, J., Rodrigues, P.C.R., Mateus, A.Pyrochlore from the Bailundo carbonatite Complex ( Angola): compositional variation and implications to mineral exploration.Journal of African Earth Sciences, Vol. 177, 104154, 16p. PdfAfrica, Angoladeposit - Bailundo

Abstract: Pyrochlore is a common accessory in carbonatite rocks and its composition can provide useful insights on petrogenetic and post-magmatic metal-enrichment processes, especially those which favour its occurrence and concentration. Comprehensive compositional and textural characterization of a large set of pyrochlores from the Bailundo Carbonatite Complex (SW Angola) and associated surface rocks was the basis to (i) evaluate the main effects of metasomatism and weathering as causes of metal leaching or concentration; and (ii) assess pyrochlore compositions as potential petrogenetic or metallogenetic tools, with particular emphasis on pyrochlore enrichment in economic components, such as Ta, REE, U, Th and Pb, during weathering processes. Unweathered fluor- and hydroxyl-calciopyrochlores from deep-seated carbonatitic rocks (provided by a 600 m-deep drill-core) often present high Ta/Nb ratios, as well as high U and Th contents, and comparatively low overall REE concentrations. Metasomatic effects are not easy to assess, given the extreme compositional variability of these pyrochlores. On the other hand, some systematic trends can be established in pyrochlores from weathered surface rocks: these pyrochlores usually show strong depletion in most A-site cations (e.g., Na, Ca, U), and clear enrichment in Nb and in large-ion metals (e.g., Ba, Sr, Pb) usually absent in unweathered pyrochlores. REE seem to be relatively immobile and to become concentrated during weathering. Along with some REE phosphates and oxides, pyrochlore is often present in several domains of the weathering profile, occurring in the outcropping weathered carbonatite as well as in the regolith immediately overlying the intrusion. Thus, both the Bailundo carbonatite intrusion and its weathering products, concentrated inside the ridge formed by differential erosion of the fenitic aureole, constitute good exploration targets for Nb (±Ta ± REE). However, future exploration work should also include a 3-D understanding of the chemical and geological processes at work in both geological environments.
DS202106-0966
2021
Rimmer, A.Flawless precision. DiamondsGems&Jewellery, Vol. 30, 1, pp. 28-30.Globalmarkets
DS202102-0218
2021
Rocheleau, J.Modeling the creation of cratons, Earth's secret keepers.Eos 102 , https://doi.org/ 10.1029/ 2021EO153324Mantleperidotites

Abstract: Geoscientists have long been trying to answer the complicated questions of how and why Earth’s continents formed. New research suggests a solution that surprised even the investigators themselves.
DS202103-0404
2020
Roseiro, J., Figueiras, J., Rodrigues, P.C.N., Mateus, A.M. Nb-bearing mineral phases in the Bailiundo carbonatite complex, ( Angola): implications of Nb geochemistry in metallogenesis.Comminocacoes Geologicas ( Researchgate), July, 7p. PdfAfrica, Angoladeposit - Bailundo

Abstract: Pyrochlore group minerals are common accessory phases in many rock types of the Bailundo Carbonatite Complex. These minerals record compositional and textural features that provide useful information regarding their genesis and accumulation, monitoring magmatic, metasomatic and weathering events. In drill core samples, primary compositions (significant Ta and U contents, and relatively low Nb and F values) are found in relict cores of strongly metasomatized pyrochlore grains; irregular patches in pyrochlore rims, typically enriched in F, Na and Nb, reflect fluid alteration fronts. At shallower levels, preserved pyrochlores show well-defined concentric zoning and substantially higher values of F and Nb. In the weathering profile, alteration processes include replacement of F, Na and Ca by Ba, Sr, Pb and H2O. These data suggest the possibility of Nb concentration in late-magmatic fluids as fluoride complexes, and its subsequent mobilization and crystallization in the form of pyrochlore at shallower levels of the Bailundo Carbonatite Complex.
DS202107-1125
2021
Roy, D.J.W., Merriman, J.D., Whittington, A.G., Hofmeister, A.M.Thermal properties of carbonatite and anorthosite from the Superior Province, Ontario, and implications for non-magmatic local thermal effects of these intrusions.International Journal of earth Sciences, Vol. 110, pp. 1593-1609.Canada, Ontariocarbonatite

Abstract: Igneous intrusions are important to the thermomechanical evolution of continents because they inject heat into their relatively cold host rocks, and potentially change the distribution of radiogenic heat production and thermal properties within the crust. To explore one aspect of the complex evolution of the continental crust, this paper investigates the local thermal effects of two intrusive rock types (carbonatites and anorthosites) on the Archean Superior Province of the Canadian shield. We provide new data on their contrasting properties: rock density near 298 K, thermal diffusivity, and heat capacity up to 800 K (which altogether yield thermal conductivity), plus radiogenic element contents. The volumetrically small carbonatites have widely varying radiogenic heat production (2–56 µW m?3) and moderate thermal conductivity at 298 K (~?1 to 4 W m?1 K?1) which decreases with temperature. The massive Shawmere anorthosite has nearly negligible radiogenic heat production (
DS202104-0604
2021
S & P Global Market IntelligenceWorld Exploration Trends 2021S & P for PDAC, 13p. PdfGlobalmarkets
DS202106-0967
2019
S&P GlobalThe socialeconomic and environmental impact of large-scale diamond mining.Trucost, https://dpawordpress.s3. amazonaws.com/ Trucost _Socioeconomic_and_Environmental_Impact_ of_Large-Scale_ Diamond_ Mining+(2)-min.pdf 37p.Globaldiamond mining

Abstract: In 2017, the DPA engaged Trucost, part of S&P Global, to undertake a world-first comprehensive analysis of the total value contribution of the DPA members, considering all material socioeconomic and environmental benefits and impacts. The study sought to capture not only the economic benefits of diamond mining, which are well understood, but also the social and environmental benefits and impacts associated with the production process. The Trucost Total Value methodology seeks to quantify and capture the full value of these benefits and impacts to provide an assessment of the value created by the DPA members.
DS202111-1782
2021
Sader, J.A., Harrison, A.L., McClenaghan, M.B., Hamilton, S.M., Clark, I.D.Sherwood Lollar, B., Leybourne, M.I.Generation of high-pH groundwaters and H2 gas by groundwater-kimberlite interaction, northeastern Ontario.The Canadian Mineralogist, Vol. 59, pp. 1261-1276. doi:10.3749/canmin.2000048 pdfCanada, Ontariodeposit - Kirkland Lake

Abstract: We report new isotopic data for H2 and CH4 gases and Sr for groundwater collected from Jurassic Kirkland Lake kimberlites in northern Ontario, Canada. Groundwaters interacting with kimberlites have elevated pH (up to 12.4), are reducing (Eh as low as the H2-H2O couple), are dominated by OH? alkalinity, and have non-radiogenic (mantle) 87Sr/86Sr values (?0.706-0.707). Most significantly, the highest pH groundwaters have low Mg, high K/Mg, and are associated with abundant reduced gases (H2 ± CH4). Open system conditions favor higher dissolved inorganic carbon and CH4 production, whereas under closed system conditions low DIC, elevated OH? alkalinity, and H2 production are enhanced. Hydrogen gas is isotopically depleted (?2HH2 = ?771 to ?801‰), which, combined with ?2HH2O, yields geothermometry temperatures of serpentinization of 5-25 °C. Deviation of H2-rich groundwaters (by up to 10‰) from the meteoric water line is consistent with Rayleigh fractionation during reduction of water to H2. Methane is characterized by ?13CCH4 = ?35.8 to ?68‰ and ?2HCH4 = ?434‰. The origin of CH4 is inconclusive and there is evidence to support both biogenic and abiogenic origins. The modeled groundwater-kimberlite reactions and production of elevated concentrations of H2 gas suggest uses for diamond-production tailings, as a source of H2 for fuel cells and as a carbon sink.
DS202106-0968
2021
Salazar-Mora, C., Sacek, V.Lateral flow of thick continental lithospheric mantle during tectonic quiescence.Journal of Geodynamics, Vol. 146, 101830, 9p. PdfMantlecraton

Abstract: The amalgamation of continental blocks naturally results in a lithosphere with lateral variations in thickness due to the juxtaposition of thicker cratonic and thinner orogenic lithospheres, which in turn evolve together through time. After the amalgamation, this mosaic of continental blocks can experience longstanding periods of relative tectonic quiescence until the next tectonic event, for instance continental rifting. Using geodynamic numerical models, we explored the internal deformation of the continental lithosphere during periods of tectonic quiescence taking into account lateral variations of lithospheric thickness. We observed that the orientation of lateral flow of the thick cratonic lithosphere depends primarily on the compositional density contrasts (??) between the asthenosphere and continental lithospheric mantle and on the width of the juxtaposed mobile belt lithosphere. In the case of mobile belts wider than 300 km, the margin of the thick craton flows towards (or underplates) the base of the thin lithosphere when ?? ? 32?48 kg/m3, whereas for smaller ?? values, the thick cratonic margin flows away from mobile belt, preserving a sharp thickness variation. For mobile belts narrower than 300 km, the ?? threshold between underplate or outward behavior decreases with the mobile belt width. Underplating of cratonic lithosphere beneath the thin lithosphere is efficient in mobile belts narrower than 300 km and for higher ??, which allows them to cool, thicken and stiffen. Lateral flow of cratonic lithosphere is not efficient to underplate wide mobile belts thoroughly, so the latter are influenced by asthenospheric heat for prolonged periods and thus remain less rigid. Therefore, we propose that protracted tectonic quiescence of supercontinents can develop lithospheric rheological inheritances that may or may not facilitate post-quiescence continental lithospheric rifting.
DS202112-1943
2021
Sarkar, S., Giuliani, A., Ghosh, S., Phillips, D.Petrogenesis of coeval lamproites and kimberlites from the Wajrakarur field, southern India: new insights from olivine compositions.Lithos, Vol. 406-407, 106524 13p. PdfIndiadeposit - Wajrakarur

Abstract: Olivine is one of the most abundant phases in kimberlites and cratonic lamproites, where it occurs as mantle-derived xenocrysts and magmatic phenocrysts or rims overgrowing xenocrystic cores, indicating its prevalence throughout most of the crystallisation sequence of these magmas. Thus, olivine can provide valuable insights into kimberlite and lamproite petrogenesis. Here, we present a detailed study of olivine compositional zoning in two lamproites (P2 and P12) of the Mesoproterozoic Wajrakarur kimberlite-lamproite field in southern India and use these data to propose a genetic link between lamproites and kimberlites in the region. Olivine macrocrysts (i.e., anhedral grains >1 mm) from the P2 and P12 intrusions are strongly zoned. Comparisons with olivine from mantle xenoliths worldwide demonstrate that the cores of olivine macrocrysts are xenocrysts derived from disaggregated mantle wall-rocks. The internal zones and overgrowth rims of olivine macrocrysts and the cores of olivine phenocrysts from P2 and P12 contain magmatic Mg-chromite and Ti-magnetite inclusions and hence crystallized from the host lamproite melt. These magmatic olivine zones show increasing Mg# (molar Mg/(Mg + Fe2+)), CaO and MnO contents with decreasing NiO. This reverse differentiation trend appears to be a characteristic feature of olivine in lamproites from the Wajrakarur field. To evaluate potential petrogenetic links between coeval lamproites and kimberlites from Wajrakarur, the composition of olivine xenocrysts (i.e., macrocryst cores) was compared with that of early crystallized olivine in P2, P12 and previously studied kimberlites and lamproites. The average Mg# of olivine macrocryst cores is directly correlated with the average Mg# of magmatic olivine in lamproites and kimberlites from Wajrakarur. Coupled with their indistinguishable Sr-Nd-Hf isotope compositions, these data suggest derivation of the Wajrakarur lamproites and kimberlites from a common source, The more Fe-rich composition of liquidus olivine in the Wajrakarur lamproites compared to coeval kimberlites suggests a higher degree of assimilation of metasomatised Fe-richer lithospheric mantle by the lamproites and provides a plausible explanation for the different petrological features of the Wajrakarur lamproites and kimberlites Our results suggest that cratonic lamproites can have a remarkably similar petrogenetic history to kimberlites.
DS202105-0788
2021
Savage, N.Quantum Diamond Sensors Synthetic versions of the super-hard gem stone are driving the development of a class of device with applications in biomedicine and beyond.https://youtu.be/VCT0wDLyvSs, https://www.nature.com/articles /d41586-021-00742-4? utm_source=Nature+Briefing&utm_campaign=d5a18a3501- briefing-dy-20210329& utm_medium=email&utm_term= 0_c9dfd39373- d5a18a3501-42627851Globalsynthetic - uses
DS202106-0969
2021
Savard, J.J., Mitchell, R.H.Petrology of ijolite series rocks from the Prairie Lake ( Canada) and Fen ( Norway) alkaline rock-carbonatite complexes.Lithos, Vol. 396-397, 106188 20p.Canada, Ontariodeposit - Prairie Lake

Abstract: This study reports the mineralogy and petrology, together with the major and trace element composition of pyroxenes, garnets and apatite from ijolite series rocks occurring at the Prairie Lake carbonatite complex, northwestern Ontario, with comparative data for ijolites from the Fen complex, Norway. The ijolites and calcite ijolites (hollaites) of Prairie Lake record the effects of magma mixing, crystal settling, solid-state re-equilibration and deuteric alteration. The Prairie Lake complex was formed by at least three stages of intrusion. The initial stage was predominantly biotite pyroxenite and associated coarse carbonatite veins. The second stage is represented primarily by members of the ijolite series together with meta-ijolites created by solid state re-equilibration of previously crystallized rocks. Differentiation of the magmas which formed the ijolite suite resulted in the formation of calcite ijolites (hollaites) and malignites (potassic nepheline syenites). The final stage was the intrusion of the heterogeneous carbonatites derived from different batches of carbonatite related magmas. These rocks contain xenoliths of ijolite suite rocks, pyroxene apatitite, wollastonite apatitite, and phoscorite. Pyroxene compositions show an evolutionary trend from diopside in biotite pyroxenites through Fe-enriched diopside-augite in ijolites to aegirine in malignites. Clinopyroxene major and trace element data show that the cores of clinopyroxene in biotite pyroxenites formed as antecrysts at depth and were emplaced as part of a later event. Trace element data from pyroxenes, garnets and apatite from Prairie Lake and Fen are similar to each other and those found in carbonatite complexes worldwide. It is proposed that a continuously-filled fractionating magma chamber was not present at Prairie Lake and that the ijolite-malignite members of the complex formed as result of small intrusions of nephelinitic magma into pre-existing ijolites. Similar styles of magmatic evolution by fractional crystallization are indicated for the Prairie Lake, Fen, and Belaya Zima ijolite?carbonatite complexes and there is no evidence that liquid immiscibility played any role in their petrogenesis.
DS202112-1944
2021
Saveleva, V.B., Danilova, Y.,Bazarova, E.P., Danilov, B.S.Kimberlite-like rocks of the Urik-Iya graben, eastern Sayan region: mineral composition, geochemistry and formation conditions.Geodynamics & Tectonophysics, Vol. 11, 4, pp. 678-696.Russiadeposit - Sayan

Abstract: The study of the Bol’shaya Tagna alkaline-carbonatite massif and adjacent areas was focused on the mineral and chemical compositions of minerals, the distribution of petrogenic and trace elements in pyroxene-free alkaline picrites in veins and dikes dated at the late Riphean (circa 645 Ma), and comparison with the Bushkanai kimberlite-picrite dike. Phenocrysts in the pyroxene-free picrites are represented by olivine (replaced with serpentine) and phlogopite; the bulk is formed by serpentine, phlogopite, monticellite, calcite, etc .; xenocrysts of pyrope and chrome diopside are absent. Phlogopite and Cr-spinel from the picrites are chemically similar to these minerals in kimberlites, but the evolution of the spinel compositions corresponds to the titanomagnetite trend; monticellite is depleted in forsterite (Mg2SiO4). The rocks contain strontianite, burbankite, titanium andradite, calcirtite and Mn-ilmenite, which are not typical of kimberlites, but are inherent in carbonate-bearing ultramafic lamprophyres, ayllikites. The pyroxene-free picrites have low contents (wt %) of SiO2 (28.4?33.2), Al2O3 (3.2?5.6), and Na2O (0.01?0.05); relatively high contents of TiO2 (2.0?3.3), and ?2? (0.45?1.33); varying contents of MgO (16.1?24.1), ??? (12.9?22.8), ??2 (1.1?12.2), Ni (260?850 ppm), and Cr (840?2200 ppm); and Mg#=0.73?0.80. The contents of Th, U, Nb, Ta, La, and Ce in the veins are approximately two orders higher than those in the primitive mantle; the spectra of trace elements differ from the spectra of the South African and Yakuian kimberlites. In the pyroxene-free picrites and the rocks of the Bushkanai dike, the Nb/U, Nb/Th, Th/Ce, La/Nb, and Zr/Nb ratios are similar to those in ocean island basalts (OIB) and thus give evidence of the leading contribution of the recycled component into the source melt. In experiments conducted to investigate melting of carbonated garnet lherzolite, the pyroxene-free alkaline picrites melted at 5-6 GPa.
DS202107-1126
2021
Savko, K.A., Tsybulyaev, S.V., Samsonov, A.V., Bazikov, N.S., Korish, E.H., Terentiev, R.A., Panevin, V.V.Archean carbonatites and alkaline rocks of the Kursk Block, Sarmatia: age and geodynamic setting.Doklady Earth Sciences, Vol. 498, 1, pp. 412-417.Russiacarbonatite

Abstract: Neoarchean intraplate granitoid (2.61 Ga) and carbonatite magmatism are established in the Kursk block of Sarmatia in close spatial association. Alkaline pyroxenites, carbonatites, and syenites of the Dubravinskii complex are represented by two relatively large intrusions and a few small plutons. They underwent amphibolite facies metamorphism at about 2.07 Ga. The age of alkaline-carbonatite magmatism is 2.59 Ga according to SIMS isotope dating of zircon from syenites. The close age and spatial conjugation allow the Dubravinskii carbonatite complex to be considered to have formed in intraplate conditions. The mantle plume upwelling caused metasomatic alteration and consequent partial melting of the sublithospheric mantle and intrusion of enriched magmas into the crust. Contamination of alkaline mantle melts in the crust by Archean TTGs caused the formation of syenites melts in the form of dykes that cutting through pyroxenites and carbonatites.
DS202102-0219
2020
Schmetzer, K., Martayan, G., Ortiz, J.G.History of the Chivor emerald mine, Part 1 ( 1880-1925): from rediscovery to early production. Part 2 listed previouslyGems & Gemology , Vol. 56, 1, pp. 66-109.South America, Colombiaemerald

Abstract: The history of the Chivor emerald mine in Colombia is rife with legend and adventure. The tale traces from early exploitation by indigenous people, to work by the Spanish in the sixteenth and seventeenth centuries, to 200 years of abandonment and jungle overgrowth. The story then picks up with rediscovery near the turn of the twentieth century by the Colombian mining engineer Francisco Restrepo using clues from a historical manuscript. Still the saga continued, with repeated shortages of investment funds driving multiple ownership changes and little progress toward mining the largely inaccessible deposit. The German gem merchant Fritz Klein, in cooperation with Restrepo, pursued limited mining activities with a small number of workers for a few months prior to the outbreak of World War I. After the war, the American company Colombian Emerald Syndicate, Ltd., took ownership, and mining operations resumed under the new leadership. Ownership changed yet again in the 1920s, followed by multiple cycles of expanding and shrinking mining activity, interrupted by completely unproductive periods.
DS202103-0405
2021
Schmitz, M., Ramirez, K., Mazuera, F., Avila, J., Yegres, L., Bezada, M., Levander, A.Moho depth map of northern Venezuela on wide-angle seismic studies.Journal of South American Earth Sciences, Vol. 107, 103088, 17p. PdfSouth America, VenezuelaGeophysics - seismics

Abstract: As part of the lithosphere, the crust represents Earth's rigid outer layer. Some of the tools to study the crust and its thickness are wide-angle seismic studies. To date, a series of seismic studies have been carried out in Venezuela to determine in detail the crustal thickness in the southern Caribbean, in the region of the Caribbean Mountain System in northern Venezuela, as well as along the Mérida Andes and surrounding regions. In this study, a review of the wide-angle seismic data is given, incorporating new data from the GIAME project for western Venezuela, resulting in a map of Moho depth north of the Orinoco River, which serves as the basis for future integrated models. Differences in Moho depths from seismic data and receiver function analysis are discussed. From the Caribbean plate, Moho depth increases from 20 to 25 km in the Venezuela Basin to about 35 km along the coast (except for the Falcón area where a thinning to less than 30 km is observed) and 40-45 km in Barinas - Apure and Guárico Basins, and Guayana Shield, respectively. Values of more than 50 km are observed in the Maturín Basin and in the southern part of the Mérida Andes.
DS202101-0032
2020
Semple, A.G., Lenardic, A.Feedbacks between a non-Newtonian upper mantle, mantle viscosity structure and mantle dynamics.Geophysical Journal International, Vol. 224, 2, pp. 961-972.Mantlegeophysics - seismics

Abstract: Previous studies have shown that a low viscosity upper mantle can impact the wavelength of mantle flow and the balance of plate driving to resisting forces. Those studies assumed that mantle viscosity is independent of mantle flow. We explore the potential that mantle flow is not only influenced by viscosity but can also feedback and alter mantle viscosity structure owing to a non-Newtonian upper-mantle rheology. Our results indicate that the average viscosity of the upper mantle, and viscosity variations within it, are affected by the depth to which a non-Newtonian rheology holds. Changes in the wavelength of mantle flow, that occur when upper-mantle viscosity drops below a critical value, alter flow velocities which, in turn, alter mantle viscosity. Those changes also affect flow profiles in the mantle and the degree to which mantle flow drives the motion of a plate analogue above it. Enhanced upper-mantle flow, due to an increasing degree of non-Newtonian behaviour, decreases the ratio of upper- to lower-mantle viscosity. Whole layer mantle convection is maintained but upper- and lower-mantle flow take on different dynamic forms: fast and concentrated upper-mantle flow; slow and diffuse lower-mantle flow. Collectively, mantle viscosity, mantle flow wavelengths, upper- to lower-mantle velocities and the degree to which the mantle can drive plate motions become connected to one another through coupled feedback loops. Under this view of mantle dynamics, depth-variable mantle viscosity is an emergent flow feature that both affects and is affected by the configuration of mantle and plate flow.
DS202108-1309
2021
Shaikh, A.M., Tappe, S., Bussweiler, Y., Brown, T.J., Vollmer, C.Origins of olivine in Earth;s youngest kimberlite: Igwisi Hills volcanoes, Tanzanian craton.Contributions to Mineralogy and Petrology, 10.1007/s00410-021-01816-2 Africa, Tanzaniadeposit - Igwisi Hills
DS202103-0406
2020
Shaikh, A.M., Tappe, S., Bussweiler, Y., Patel, S.C., Ravi, S., Bolhar, R., Viljoen, F.Clinopyroxene and garnet mantle cargo in kimberlites as probes of Dharwar craton architecture and geotherms, with implications for post -1.1 Ga lithosphere thinning events beneath southern India.Journal of Petrology, Vol. 61, 9, egaa087 23p. PdfIndiadeposit - Wajrakarur

Abstract: The Wajrakarur Kimberlite Field (WKF) on the Eastern Dharwar Craton in southern India hosts several occurrences of Mesoproterozoic kimberlites, lamproites and ultramafic lamprophyres, for which mantle-derived xenoliths are rare and only poorly preserved. The general paucity of mantle cargo has hampered the investigation of the nature and evolution of the continental lithospheric mantle (CLM) beneath cratonic southern India. We present a comprehensive study of the major and trace element compositions of clinopyroxene and garnet xenocrysts recovered from heavy mineral concentrates for three c.1•1?Ga old WKF kimberlite pipes (P7, P9, P10), with the goal to improve our understanding of the cratonic mantle architecture and its evolution beneath southern India. The pressure-temperature conditions recorded by peridotitic clinopyroxene xenocrysts, estimated using single-pyroxene thermobarometry, suggest a relatively moderate cratonic mantle geotherm of 40 mW/m2 at 1•1?Ga. Reconstruction of the vertical distribution of clinopyroxene and garnet xenocrysts, combined with some rare mantle xenoliths data, reveals a compositionally layered CLM structure. Two main lithological horizons are identified and denoted as layer A (?80-145?km depth) and layer B (?160-190?km depth). Layer A is dominated by depleted lherzolite with subordinate amounts of pyroxenite, whereas layer B comprises mainly refertilised and Ti-metasomatized peridotite. Harzburgite occurs as a minor lithology in both layers. Eclogite stringers occur within the lower portion of layer A and at the bottom of layer B near the lithosphere-asthenosphere boundary at 1•1?Ga. Refertilisation of layer B is marked by garnet compositions with enrichment in Ca, Ti, Fe, Zr and LREE, although Y is depleted compared to garnet in layer A. Garnet trace element systematics such as Zr/Hf and Ti/Eu indicate that both kimberlitic and carbonatitic melts have interacted with and compositionally overprinted layer B. Progressive changes in the REE systematics of garnet grains with depth record an upward percolation of a continuously evolving metasomatic agent. The intervening zone between layers A and B at ?145-160?km depth is characterized by a general paucity of garnet. This ‘garnet-paucity’ zone and an overlying type II clinopyroxene-bearing zone (?115-145?km) appear to be rich in hydrous mineral assemblages of the MARID- or PIC kind. The composite horizon between ?115-160?km depth may represent the product of intensive melt/rock interaction by which former garnet was largely reacted out and new metasomatic phases such as type II clinopyroxene and phlogopite plus amphibole were introduced. By analogy with better-studied cratons, this ‘metasomatic horizon’ may be a petrological manifestation of a former mid-lithospheric discontinuity at 1•1?Ga. Importantly, the depth interval of the present-day lithosphere-asthenosphere boundary beneath Peninsular India as detected in seismic surveys coincides with this heavily overprinted metasomatic horizon, which suggests that post-1•1?Ga delamination of cratonic mantle lithosphere progressed all the way to mid-lithospheric depth. This finding implies that strongly overprinted metasomatic layers, such as the ‘garnet-paucity’ zone beneath the Dharwar craton, present structural zones of weakness that aid lithosphere detachment and foundering in response to plate tectonic stresses.
DS202111-1783
2021
Sharhar, G., Fei, Y., Kessel, R.Melting of carbonate-bearing peridotite as a function of oxygen fugacity: implications for mantle melting beneath mid-ocean ridges.Contributions to Mineralogy and Petrology, Vol. 176, 10, 15p. Pdf Mantlecarbonatite

Abstract: The depth of melting beneath mid-ocean ridges (MORs) controls the melt composition as well as its rheology. Since mantle melting below MORs is the main mechanism of mantle degassing and CO2 emission into the atmosphere and oceans, there is an increasing interest in understanding the sub-ridge mantle conditions leading to its melting. Here we study the effect of oxygen fugacity on melting of carbonate-bearing peridotite at 3 GPa. Two metal—metal-oxide buffers (RRO and IW) were used to influence the fO2 of the experimental charge. Using Ir-Fe alloy sliding redox sensors, the fO2 of the two sets of experiments was measured. The solidus at IW?+?4.5 was found to be at 950 °C, while at IW?+?2.5 melting initiated at 1150 °C. In both sets of experiments, near-solidus carbonatitic melts evolved to carbon-bearing silicate melts with increasing temperature. This study together with previous studies suggest that increasing fO2 of a carbonate-bearing peridotite results in lowering of its melting temperature. Extrapolating these solidi to higher pressures results in initiation of melting of a relatively oxidizing mantle at?~?430 km while melting of a more reduced mantle will initiate at depth of?~?320 km. Very low velocity anomalies in the sub-ridge mantle at depth may reflect the initiation of melting, triggered by the presence of carbonate in the mantle at 1-2 log units below QFM.
DS202110-1635
2021
Sharkov, E.V., Chistyakov, A.V., Bogina, M.M., Shchiptsov, V.V., Belyatsky, B.V., Frolov, P.V.Petrology of the Mid-Paleoproterozoic Tiksheozero ultramafic-alkaline-carbonatite complex, ( Northern Karelia).Petrology, Vol. 29, 5, pp. 475-501. pdfRussia, Kareliadeposit - Tiksheozero

Abstract: The paper reports first comprehensive geological, petrographic, mineralogical, and geochemical data on one of the world’s oldest Tiksheozero ultramafic?alkaline?carbonatite complex (~1.99 Ga), which belongs to the Mid-Paleoproterozoic igneous province of the Baltic Shield. The complex was formed in three intrusive phases. The first phase is composed of the low-alkali mafic?ultramafic rocks: dunites, wehrlites, clinopyroxenites, and gabbro. The rocks of the second phase are alkaline ultramafic rocks represented mainly by jacupirangites (alkaline clinopyroxenites) and foidolites (melteigites, ijoliltes, and urtites), with subordinate olivinites, alkaline gabbro, and nepheline syenites. The third intrusive phase is made up of carbonatites. Geochemical and mineralogical data indicate that all three phases were derived from different primary melts. It is shown that the nepheline syenites were obtained by fractionation of foidolites. A model of formation of such complexes through decompressional melting of mantle plume head enriched in carbonate fluid is proposed.
DS202104-0605
2021
Sharma, J., Kumar, M.R., Roy, K.S., Pal, S.K., Roy, P.N.S.Low velocity zones and negative radial anisotropy beneath the plume perturbed northwestern Deccan volcanic province.Journal of Geophysical Research: Solid Earth, 126, e2020JB02 0295. https://doi.org/ 10.1029/ 2020JB020295Indiageophysics - seismic

Abstract: The Deccan volcanic province (DVP) witnessed a massive outpouring of flood basalts of ?2 million km3 volume, at ?65 Ma, in less than a Myr. The volcanic eruption is concomitant with crustal extension, lithospheric thinning and magma influx beneath the major rift systems namely Cambay, Narmada, and Kutch. In this study, we investigate the anisotropic and isotropic variations within the crust and upper mantle beneath the northwestern DVP by estimating the shear wave velocity (VSV, VSH, and VSoigt) and radial anisotropy (?oigt) models using the Surface Wave Tomography technique. A joint inversion of the regionalized Rayleigh and Love wave group velocities is performed, using the genetic algorithm approach. Our results reveal different intracrustal layers, lid, and a low?velocity zone (LVZ). This LVZ comprises of a uniform asthenospheric low?velocity layer (LVL) of average VSV 4.44 km/s and VSH 4.47 km/s, and another LVL below, of average VSV 4.45 km/s and VSH 4.41 km/s. Furthermore, the LVZ represents a negative anomaly with reference to different global models (AK135, STW105, PREM, and S2.9EA). A negative ?oigt is observed in the LVZ, indicating dominance of vertical flow. This could be related to presence of partials melts, volatile materials and/or a thermal anomaly. We also identified the Moho (?34-40 km) and lithosphere?asthenosphere boundary (?84-123 km). The low VS values, negative ?oigt and a thin lithosphere (?84 km) in the vicinity of Gulf of Cambay affirm the presence of a plume head beneath it, in concurrence with the hypothesis of Indian Plate?Reunion plume interaction.
DS202112-1945
2021
Sharygin, I.S., Golovin, A.V., Dymshits, A.M., Kalugina, A.D., Solovev, K.A., Malkovets, V.G., Pokhilenko, N.P.Relics of deep alkali-carbonate melt in the mantle xenolith from the Komosomolskaya-Magnitnaya kimberlite pipe ( Upper Muna field, Yakutia).Doklady Earth Sciences, Vol. 500, 2, pp. 842-847.Russia, Yakutiadeposit - Komosomolskaya-Magnitnaya

Abstract: The results of study secondary crystallized melt inclusions in olivine of a sheared peridotite xenolith from the Komsomolskaya-Magnitnaya kimberlite pipe (Upper Muna field, Yakutia) are reported. Monticellite, phlogopite, tetraferriphlogopite KMg3(Fe3+)Si3O10(F,Cl,OH), apatite, aphthitalite K3Na(SO4)2, burkeite Na6CO3(SO4)2, and carbonates, namely calcite, nyerereite (Na,K)2Ca(CO3)2, shortite Na2Ca2(CO3)3, and eitelite Na2Mg(CO3)2, were detected among the daughter minerals of the melt inclusions by the method of confocal Raman spectroscopy. The abundance of alkali carbonates in the inclusions indicates the alkali-carbonate composition of the melt. Previously, identical inclusions of alkali-carbonate melt were reported in olivine of sheared peridotites from the Udachnaya pipe (Daldyn field). Melt inclusions in sheared peridotites are the relics of a crystallized kimberlite melt that penetrated into peridotites either during the transport of xenoliths to the surface or directly in the mantle shortly prior to the entrapment of xenoliths by the kimberlite magma. If the second scenario took place, the finds of alkali-carbonate melt inclusions in sheared peridotites carried from different mantle depths in the Udachnaya and Komsomolskaya-Magnitnaya kimberlite pipes indicate a large-scale metasomatic alteration of the lithospheric mantle of the Siberian Craton by alkaline-carbonate melts, which preceded the kimberlite magmatism. However, regardless of which of the two models proposed above is correct, the results reported here support the alkali-carbonate composition of primary kimberlite melts.
DS202103-0407
2021
Shatskiy, A., Arefiev, A.V., Podborodnikov, I.V., Litasov, K.D.Effect of water on carbonate-silicate liquid immiscibility in the system KAlSi3O8-CaMgSiO6-NaAlSiO6-CaMg(CO3)2 at 6 Pa: implications for diamond forming melts.American Mineralogist, Vol. 106, pp. 165-173. pdfMantlemelting

Abstract: To evaluate the effect of Na on the carbonate-silicate liquid immiscibility in the diamond stability field, we performed experiments along some specific joins of the system KAlSi3O8-CaMg(CO3)2 ± NaAlSi2O6 ± Na2CO3 at 6 GPa. Melting in all studied joins begins at 1000-1050 °C. The melting in the Kfs + Dol system is controlled by the reaction 6 KAlSi3O8 (K-feldspar) + 6 CaMg(CO3)2 (dolomite) = 2 (Can,Mg1-n)3Al2Si3O12 (garnet) + Al2SiO5 (kyanite) + 11 SiO2 (coesite) + 3 K2(Ca1-n,Mgn)2(CO3)3 (carbonatitic melt) + 3 CO2 (fluid), where n ~ 0.3-0.4. A temperature increasing to 1300 °C yields an appearance of the silicic immiscible melt in addition to carbonatitic melt via the reaction K2CO3 (carbonatitic melt) + Al2SiO5 (kyanite) + 5 SiO2 (coesite) = 2 KAlSi3O8 (silicic melt) + CO2 (fluid or solute in melts). The silicic melt composition is close to KAlSi3O8 with dissolved CaMg(CO3)2 and molecular CO2. An addition of NaAlSi2O6 or Na2CO3 to the system results in partial decomposition of K-feldspar and formation of K-bearing carbonates, (K, Na)2Mg(CO3)2 and (K, Na)2Ca3(CO3)4. Their melting produces carbonatite melt with the approximate composition of 4(K, Na)2CO3•6Ca0.6Mg0.4CO3 and magnesite. Besides, the presence of NaAlSi2O6 in the studied system shifts the lower-temperature limit of immiscibility to 1500°?, while the presence of Na2CO3 eliminates the appearance of silicic melt by the following reaction: 2 KAlSi3O8 (in the silicic melt) + Na2CO3 = 2 NaAlSi2O6 (in clinopyroxene) + K2CO3 (in the carbonatitic melt) + SiO2 (coesite). Thus, an increase of the Na2O content in the system Na2O-K2O-CaO-MgO-Al2O3-SiO2-CO2 consumes Al2O3 and SiO2 from silicic melt to form clinopyroxene. We found that grossular-pyrope and diopside-jadeite solid solutions can coexist with CO2 fluid at 900-1500 °C and 6 GPa. Thus, CO2 fluid is stable in the eclogitic suite in the diamond stability field under temperature conditions of the continental lithosphere and subducting slabs. Variations in the Na2O content observed in carbonatitic melts trapped by natural in diamonds exceed those derived by the pelite melting. The present experiments show that an addition of NaAlSi2O6 to the Kfs + Dol system does not cause an increase of the Na2O content in the carbonatitic melt, whereas the addition of Na2CO3 at Na2O/Al2O3 > 1 yields the formation of the melts with the Na2O contents covering the entire range of natural compositions. Thus, only the presence of additional salt components can explain the elevated Na2O content in the melts trapped in lithospheric diamonds. In addition to carbonates, sodium can be hosted by chlorides, sulfates, etc.
DS202112-1946
2022
Shatskiy, A., Bekhtenova, A., Arefiev, A.V., Podborodnikov, I.V., Vinogradova, Y.C., Rezvukin, D.I., Litasov, K.D.Solidus and melting of carbonated phlogopite peridotite at 3-6.5 Gpa: implications for mantle metasomatism.Gondwana Research, Vol. 101, 156-174. pdfRussiadeposit - Udachnaya

Abstract: It is well known that water significantly lowers mantle solidi. But it turns out this paradigm is not always true. Here, we studied the interaction of K-rich carbonate melts with the natural garnet lherzolite from the Udachnaya kimberlite (Russia) in the presence of water at 3.0-6.5 GPa, corresponding to depths of 100-200 km. We found that at ? 1100 °C, the metasomatic interaction consumes garnet, orthopyroxene, and melt to produce phlogopite ± K-richterite + magnesite ± dolomite. Besides, primary clinopyroxene is replaced by one with a lower amount of jadeite component. Thus, the addition of water to the K-rich carbonate melt, infiltrating the subcontinental lithospheric mantle, should yield its partial or complete disappearance accompanied by phlogopitization and carbonation. The studied systems have H2O/K2O = 2, like that in phlogopite, and therefore correspond to carbonated phlogopite peridotite under fluid-absent conditions. At 4.0-6.5 GPa, the solidus of carbonated phlogopite peridotite is controlled by the following reaction: phlogopite + clinopyroxene + magnesite = garnet + orthopyroxene + olivine + hydrous K-carbonatite melt, which is bracketed between 1100 and 1200 °C. At 3 GPa, the solidus temperature decreases to about 1050 °C presumably owing to the Ca-Mg exchange reaction, clinopyroxene + magnesite = orthopyroxene + dolomite, which stabilizes dolomite reacting with phlogopite at a lower temperature than magnesite. Our results suggest that the phlogopite- and carbonate-rich metasomatic vein networks, weakening rigid lithosphere and promoting continental rifting, could be formed as a result of infiltration of hydrous K-carbonatite melt at the base of subcontinental lithospheric mantle. Stretching and thinning of the cratonic lithosphere make geotherms warmer and shifts their intersections with the solidus of carbonated phlogopite peridotite to shallower depths. Consequently, the successive erosion of the continental lithosphere and ascent of the lithosphere-asthenosphere boundary during continental rifting should be accompanied by remelting of phlogopite-carbonate metasomes, upward percolation of K-rich melt, and its solidification at the front of the magmatic-metasomatic mantle system.
DS202105-0789
2021
Shatskiy, A., Podborodnikov, I.V., Arefiev, A.V., Bekhtenova, A., Vinogradova, Y.G., Stepanov, K.M., Litasov, K.D.Pyroxene-carbonate reactions in the CaMgSi206+-NaAlSi206+MgC03+-Na2C03+-K2C03 system at 3-6 Gpa: implications for partial melting of carbonated peridotite.Contributions to Mineralogy and Petrology, Vol. 176, 34 21p. PdfMantlecarbonatites

Abstract: The reactions between pyroxenes and carbonates have been studied in the CaMgSi2O6 + MgCO3 (Di + 2Mgs), CaMgSi2O6 + NaAlSi2O6 + 2MgCO3 (Di + Jd + 2Mgs), CaMgSi2O6 + Na2Mg(CO3)2 (Di + Eit), and CaMgSi2O6 + K2Mg(CO3)2 (Di + K2Mg) systems at pressures of 3.0 and 4.5 GPa in the temperature range 850-1300 °C and compared with those established previously at 6.0 GPa. The Di + 2Mgs solidus locates at 1220 °C / 3 GPa and 1400 °C / 6 GPa. Near-solidus melt is carbonatitic with SiO2 < 4 wt% and Ca# 56. The Di + Jd + 2Mgs solidus locates near 1050 °C at 3 GPa, rises to 1200 °C at 4.5 GPa, and 1350 °C at 6 GPa. The solidus is controlled by the reaction: 4NaAlSi2O6.2CaMgSi2O6 (clinopyroxene) + 12MgCO3 (magnesite) = 2MgAl2SiO6.5Mg2Si2O6 (clinopyroxene) + 2[Na2CO3.CaCO3.MgCO3] (liquid) + 6CO2. As pressure increases, the composition of solidus melt evolves from 26Na2CO3?74Ca0.58Mg0.42CO3 at 3 GPa to 10Na2CO3?90Ca0.50Mg0.50CO3 at 6 GPa. Melting in the Di + Eit and Di + K2Mg systems is controlled by the reactions: CaMgSi2O6 (clinopyroxene) + 2(Na or K)2 Mg(CO3)2 (eitelite) = Mg2Si2O6 (orthopyroxene) + 2[(Na or K)2CO3?Ca0.5Mg0.5CO3] (liquid). The Di + Eit solidus locates at 925 °C / 3 GPa and 1100 °C / 6 GPa, whereas the Di + K2Mg solidus is located at 50 °C lower. The resulting melts have alkali-rich carbonate compositions, (Na or K)2CO3?Ca0.4Mg0.6CO3. The obtained results suggest that most carbonates belong to the ultramafic suite would survive during subduction into the deep mantle and experience partial melting involving alkaline carbonates, eitelite or K2Mg(CO3)2, under geothermal conditions of the subcontinental lithospheric mantle (35-40 mW/m2). On the other hand, the jadeite component in clinopyroxene would be an important fluxing agent responsible for the partial melting of carbonated rocks under the rift margin geotherm (60 mW/m2) at a depth of about 100 km, yielding the formation of Na-carbonatite melt.
DS202107-1127
2021
Shatsky, V.S., Ragozin, A.L., Skuzovatov, S. Yu., Kozmenko, O.A., Yagoutz, E.Isotope-geochemical evidence of the nature of protoliths of diamondiferous rocks of the Kokchetav subduction-collision zone ( northern Kazakhstan).Russian Geology and Geophysics, Vol. 62, pp. 547-556, pdfRussia, Kazakhstandeposit - Kokchetav

Abstract: The isotope-geochemical features of diamondiferous metamorphic rocks of the Kokchetav subduction–collision zone (KSCZ) show that both the basement rocks and the sediments of the Kokchetav massif were their protoliths. A whole-rock Sm–Nd isochron from the diamondiferous calc-silicate, garnet–pyroxene rocks and migmatized granite-gneisses of the western block of the KSCZ yielded an age of 1116 ± 14 Ma, while an age of 1.2–1.1 Ga was obtained by U–Pb dating of zircons from the granite-gneiss basement of the Kokchetav microcontinent. Based on these data, we assume that the protoliths of the calc-silicate, garnet–pyroxene rocks and the granite-gneisses of the KSCZ were the basement rocks sharing an initially single Nd source, which was not influenced by high- to ultrahigh-pressure metamorphism (~530 Ma). Therefore, their geochemical features are probably not directly related to ultrahigh-pressure metamorphism. The corresponding rock associations lack isotope-geochemical evidence of partial melting that would occur during ultrahigh-pressure metamorphism, which suggesting that they were metamorphosed under granulite-facies conditions. At the same time, the high-alumina diamondiferous rocks of the Barchi area (garnet–kyanite–mica schists and granofelses), which were depleted to different degrees in light rare-earth elements (REE) and K, have yielded a Sm–Nd whole-rock isochron age of 507 ± 10 Ma indicating partial melting of these rocks during their exhumation stage. The close ?Nd (1100) values of the basement rocks and garnet–kyanite–mica schist with geochemical characteristics arguing against its depletion during high-pressure metamorphism indicate that the basement rocks were a crustal source for high-alumina sediments.
DS202102-0220
2020
Shearman, R.What is the story behind Aether and how did the business start? Gems & Gemology , Vol. 29, 4, pp. 22-24. pdfEurope, Switzerlandsynthetics
DS202109-1488
2021
Shellnutt, J.G.The enigmatic continental crust of North-Central Africa: Saharan metacraton or central Saharan shield?South African Journal of Geology, Vol. 124, pp. 383-390.Africacraton

Abstract: The continental crust of North-Central Africa between the Tuareg and Arabian-Nubian shields and south to the Central African Orogenic Belt is enigmatic due to the few bedrock exposures especially within the central region. The current understanding, based on a review of geochronology and isotope geochemistry, is that the central Sahara region is a large, coherent craton that was ‘highly remobilized’ during the Late Neoproterozoic amalgamation of Gondwana and referred to as the Saharan Metacraton. However, new data from the Guéra, Ouaddaï, and Mayo Kebbi massifs and the Lake Fitri inlier of Chad suggest that it may be a composite terrane of older cratonic blocks or microcontinents with intervening Mesoproterozoic to Neoproterozoic domains and referred to as the ‘Central Sahara Shield’. It is postulated that the older crust and juvenile crust were sutured together along a Pan-Gondwana collisional belt (Central Sahara Belt) that bisects the central Sahara region. The ‘Central Sahara Shield’ hypothesis suggests the Chad Lineament, a narrow arcuate gravity anomaly within central Chad, could be a collisional belt suture zone and that it may explain the existence of the relatively juvenile crust that typifies southern and eastern Chad. The new data improves upon the existing knowledge and challenges the lithotectonic paradigm of the Saharan Metacraton. Further investigations are required to fully characterize the crust of the central Sahara region and to test the contrasting hypotheses.
DS202111-1784
2021
Shephard, G.E., Houser, C., Hernlund, J.W., Valencia-Cardona, J.J., Tronnes, R.G., Wentzcovitch, R.M.Seismological expression of the iron spin crossover in ferropericlase in the Earth's lower mantle.Nature Communications, Vol. 12, 1, doi:10.1038/s41467-021-26115-zMantlegeophysics - seismics

Abstract: The two most abundant minerals in the Earth’s lower mantle are bridgmanite and ferropericlase. The bulk modulus of ferropericlase (Fp) softens as iron d-electrons transition from a high-spin to low-spin state, affecting the seismic compressional velocity but not the shear velocity. Here, we identify a seismological expression of the iron spin crossover in fast regions associated with cold Fp-rich subducted oceanic lithosphere: the relative abundance of fast velocities in P- and S-wave tomography models diverges in the?~1,400-2,000 km depth range. This is consistent with a reduced temperature sensitivity of P-waves throughout the iron spin crossover. A similar signal is also found in seismically slow regions below?~1,800 km, consistent with broadening and deepening of the crossover at higher temperatures. The corresponding inflection in P-wave velocity is not yet observed in 1-D seismic profiles, suggesting that the lower mantle is composed of non-uniformly distributed thermochemical heterogeneities which dampen the global signature of the Fp spin crossover.
DS202110-1636
2021
Shi, Y-N., Li, Z-H., Chen, L., Morgan, J.P.Connection between a sublithocontinental plume and the mid-lithospheric discontinuity leads to fast and intense craton lithospheric thinning. Tectonics, e2021TC006711 22p. PdfAustralia, China, Canada, Russia, South Americacraton

Abstract: Removal and thinning of cratonic lithosphere is believed to have occurred under different tectonic settings, for example, near subduction zones and above mantle plumes. Subduction-induced cratonic modification has been widely discussed; however, the mechanisms and dynamic processes of plume-induced lithospheric removal remain elusive and require further systematic investigation. In this study, we conduct a series of 2-D thermo-mechanical models to explore the dynamics of the removal and thinning of cratonic lithosphere due to the interaction between a mantle plume and a weak mid-lithosphere discontinuity (MLD) layer. Our modeling results suggest that the interaction between a mantle plume and weak MLD layer can lead to a large-scale removal of the cratonic lithosphere as long as the connection between the hot upwelling and weak MLD layer is satisfied. The presence of a vertical lithospheric weak zone and its closeness to the plume center play critical roles in creating a connection between the weak MLD and hot plume/asthenosphere. Furthermore, delamination of cratonic lithosphere is favored by a larger plume radius/volume, a higher plume temperature anomaly, and a lower viscosity of the MLD layer. A systematic comparison between subduction-induced and plume-induced lithospheric thinning patterns is further conducted. We summarize their significant differences on the origin and migration of melt generation, the water content in melts, and topographic evolution. The combination of numerical models and geological/geophysical observations indicates that mantle plume-MLD interaction may have played a crucial role in lithospheric removal beneath South Indian, South American and North Siberian Cratons.
DS202107-1128
2019
Shirey, S.B., Smit, K.V., Pearson, D.G., Walter, M.J., Aulbach, S., Brenker, F.E., Bureau, H., Burnham, A.D., Cartigny, P., Chacko, T., Frost, D.J., Hauri, E.H., Jacob, D.E., Jacobsen, S.D., Kohn, S.C., Luth, R.W., Mikhail, S., Navon, O.. Nestola, F., NimDiamonds and mantle geodynamics of carbon.Deep Carbon - Cambridge University Press , Cambridge.org 40p. PdfMantlecarbon
DS202107-1129
2021
Shirey, S.B., Wagner, L.S., Walter, M.J., Pearson, D.G., van Keken, P.E.Slab transport of fluids to deep focus earthquake depths - thermal modeling constraints and evidence from diamonds.AGU, 10.1029/2020AV000304 28p. PdfMantleinclusions, geothermometry

Abstract: Earthquakes occurring below ?300 km, especially in the mantle transition zone are some of the strongest events experienced on Earth. Deep earthquakes, whose nature and cause are poorly known, occur with regularity and are a deep and prominent result of plate tectonics. We model the paths of subducting slabs to relate pressure-temperature conditions to the experimentally determined mineralogies of the slab crust and mantle. We present a synthesis of mantle minerals included in diamonds derived from same depths as the deep earthquakes to show that fluids exist there. We show that decarbonization/melting reactions in the slab crust and dehydration reactions in the slab mantle can provide fluids to the earthquake generation regions, suggesting that fluids cause or are related to deep earthquakes.
DS202104-0606
2021
Shribak, M., Cesare, B.Polychromatic polarization and the good old microscope: new avenues for the microstructural imaging of geological materials.( not specific to diamonds)Researchgate conference paper, 3p. PdfGlobalmicroscope

Abstract: The polarizing microscope, fundamental tool for any first characterization of geological materials, suffers from one major limitation, namely the poor ability to image microstructures where minerals have a retardance <400 nm and display interference colors in the gray scale. This problem, so far considered as intrinsic and unsolvable, has prevented detailed optical observation of many low-birefringence (e.g., quartz, feldspars, leucite) or quasi-isotropic (e.g., garnet) rock-forming minerals. For the microstructural analysis of these phases, alternative microscopic techniques, mostly electronic, have been developed and are routinely used. Polychromatic polarization microscopy (PPM, [1]) is a new optical technique that overcomes the above limitations and allows inspection of materials with retardation from 1 to 400 nm. This is achieved by means of a full spectrum color palette where the hue depends on orientation of the slow axis and the saturation depends on the retardance amount. We have applied PPM to regular, glass-covered 30 µm rock thin sections, with particular interest for the subtle birefringence of garnet, due both non-cubic growth[2] or to strain induced by external stresses or by mineral inclusions. PPM produces striking, colorful images that highlight different types of microstructures in very low retardance phases, which are virtually undetectable by conventional polarizing microscopy. The calibrated hue scale provides straightforward measurement of the orientation of optical axes in the thin section (Fig. 1). PPM will open new avenues for microstructural analysis of geological materials. We highlight two of them. On one hand the direct detection and imaging of microstructures will provide a fast and cheap alternative (or complement) to time-consuming and more expensive SEM-based analyses such as, e.g., EBSD. On the other hand this powerful imaging method will provide-again in a very fast way-a much better texturally constrained basis for the location of targets for cutting-edge applications such as, e.g., FIB-TEM or Atom Probe. Figure 1-The same crystal of tetragonal garnet studied in [2] viewed under crossed-polarizers (left), with the ? plate (center), and under PPM (right). The thin section is glass-covered and has a regular 30-µm thickness.
DS202103-0408
2021
Shubin, I.I., Filina, M., Kogarko, L.Evolution of pyroxenes of the Lovozero rare metal deposit ( Lower zone).Geochemistry International, Vol. 59, pp. 92-98. pdfRussiaREE

Abstract: This paper reports the results of the first study of pyroxenes from the deepest zones of the Lovozero deposit. The geochemical and mineralogical study of these rocks is of great scientific interest, as they are the least differentiated rocks and provide insight into the composition of a parental magma. According to microprobe analysis, clinopyroxenes evolve from early diopside-hedenbergite-augite to later alkaline aegirine-augite species. Upsection, the contents of Na, Fe3+ and Ti increase, while Mg, Ca, Fe2+, and Zr decrease. Thus, isomorphic substitution in pyroxenes of the lower zone follows the scheme (Ca, Mg, Fe2+, Zr) ? (Na, Fe3+, Ti).
DS202104-0607
2021
Shumilova, T.Diamond fossils as an important new key for astrobiology.Researchgate conference paper, 2p. PdfRussiaimpact craters Kara, Popigai

Abstract: Astrobiology is one of the actively studied fields aimed to answer the question about the Earth life origin. The detail studies of the organic matter could give a key for understanding about possible conditions for preservation of the biological material at the extreme conditions of the giant impact events and meteorite fallings. In the context of the astrobiological problem the recent discovery of diamond fossils is very informative and impressive [1, 2]. Here we describe in short the features of the impact-preserved organic relicts in the diamond state having relict fragments of cellulose and lignin, pointing to possibility to save organics even under the conditions of diamond formation. Impact Diamonds: Almost 50 years have passed since the discovery of impact diamonds. Currently, several varieties of impact diamonds are known in natural geological objects, determined by the type of carbon precursor, that define their formation mechanisms and structural features. Actually, aftergraphite, after-coal and after-organic diamonds are known [1-5]. The latter usually present in the form of diamond fossils after plant fragments. After-Graphitic Impact Diamonds: The aftergraphitic diamonds were discovered in the 70s of the XX century in the largest Popigai astrobleme with a diameter of about 100 km, bearing giant reserves of valuable technical diamond raw materials [3, 4]. This type of impact diamonds is formed by solid-state transformation of the graphite precursor structure to diamond with a diffusion-free mechanism forming micropolycrystalline aggregates with submicrometersized crystals [1]. This variety is characterized by polyphase aggregates with possible substantial amount of hexagonal packaging defects (named “lonsdaleite”) within the cubic diamond structure [6]. It may also include an admixture of relict graphite, amorphous and onion-like carbon [7, 8]. Currently, apographic diamonds have been discovered in several deposits, for example diamond-rich Popigai and Puchezh-Katunki in Russia, Ries (Germany), Sudbury (Canada). After-Coal Impact Diamonds: After-coal impact diamonds were discovered a bit later, they were found in the giant Kara astrobleme in 80s of the XX century [3, 4]. This diamond type was formed by short-distance diffusion mechanism from coalificated carboniferous particles from the host sedimentary rocks, described in detail in [5]. The diamonds have crystallites size about 20-50 nm, differ from the after-graphitic variety by presence of ideal octahedral crystallite shapes and dislocation-free (lonsdaleite-free) structure [2]. By present the after-coal diamonds are known only at the Kara astrobleme and near-set Ust`-Kara impactites. After-Organic Diamonds (Diamond Fossils): The diamond fossils have been just discovered. The first find has been found out within melt fragment within suevitic breccia at the Kara astrobleme (Fig. 1). The diamonds are presented with well preserved relict cell micromorphology and have very specific structure, composition and spectroscopic features studied and described in detail in [1].
DS202112-1947
2021
Shumlyanskyy, L., Kamenetsky, V.S., Tsymbal, S.M., Wilde, S.A., Nemchin, A.A., Ernst, R.E.,Shumlianska, L.Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite meltsLithos, Vol. 406-407. doi: 10.1016/j.lithos.2021.106528 12p. PdfRussiadeposit - Azov

Abstract: Zircon megacrysts are commonly found in kimberlites and, together with olivine, low-Cr garnet, pyroxene, phlogopite, and ilmenite megacrysts, they constitute a mineral assemblage known as the "low-Cr suite". The generally close similarity of ages and similar isotope geochemical characteristics of megacrysts and matrix minerals in the host kimberlites support a cognate origin. However, alteration rims commonly develop on zircon and ilmenite megacrysts, providing evidence for a lack of chemical equilibrium between the megacrysts and kimberlitic melts. Here, we report results of a detailed geochronological and geochemical study of zircon megacrysts found in the Middle Devonian Novolaspa kimberlite pipe and dyke located in the Azov Domain of the Ukrainian Shield. The concordia age of zircons is 397.0 ± 2.0 Ma, and it is 14 m.y. older than the age of kimberlite emplacement as defined by a Rb-Sr isochron on phlogopite. The average ?Hf(397) value for unaltered zircon megacrysts is 6.8 ± 0.14, with the alteration rims having similar Hf isotope systematics. These hafnium isotope data indicate a moderately depleted mantle source for zircon. Unaltered megacrystic zircons have low abundances of trace elements and fractionated REE, with pronounced positive Ce/Ce* anomalies and almost no Eu/Eu* anomalies. In contrast, alteration rims have very high and variable concentrations of trace elements, indicating a reaction between zircon and kimberlite melt. The melt or fluid responsible for zircon and ilmenite megacryst formation, in contrast to kimberlitic melt, was poor in incompatible trace elements, except for the HFSE (Zr, Hf, Nb, Ta, and Ti). The oxygen fugacity during crystallization of the megacryst suite was close to the FMQ buffer. Azov zircon megacrysts do not demonstrate close geochronological and isotope-geochemical similarities with their host kimberlites. They are cognate in the broad sense of being related to the same plume event, but their direct affinity is not clearly defined. The megacryst suite may have crystallized from the earliest melts/fluids that separated from the ascending mantle plume, whereas kimberlite magmas were emplaced 14 m.y. after this event.
DS202111-1785
2021
Simakov, S., Stegnitskiy, Y.A new pyrope-based mineralogical-petrological method for identifying the diamond potential of kimberlite/lamproite deposits.Ore and Energy Resource Geology, Vol. 7, 100013 12p. PdfRussiamantle fluids

Abstract: P-T- Oxygen fugacity (fO2) conditions and fluid compositions were estimated for the formation conditions of pyrope garnet inclusions in diamonds and xenocrysts from diamond-bearing and diamond-free kimberlites using their total chemical analyses and single oxythermobarometry. Our data indicate that optimal conditions for diamond growth and preservation occur in the presumed water-rich mantle fluids containing the lowest abundance of free atomic carbon. The majority of the calculated C-H-O fluid compositions for diamond formation in peridotite xenoliths from high diamond grade kimberlites correspond to a high hydrogen and low carbon and oxygen atomic fluid percents, while those from the majority of peridotite xenoliths in the low grade diamond kimberlites corresponds to the low hydrogen, high carbon and oxygen atomic percent fluids. This new approach defines the conditions of diamond formation for kimberlitic deposits. It better characterizes diamond grades in kimberlites in comparison to the previous empirical mineralogical Ca-Cr methods and can be used as a more precise mineralogical-petrological method for prospecting for kimberlitic diamond deposits.
DS202102-0221
2020
Simbanegavi, G.The mining mindset…. BlueRock story.Gems & Gemology , Vol. 29, 4, pp. 19-21. pdfAfrica, South Africamining
DS202106-0970
2021
Singh, A.P., Kumar, N., Nageswara Rao, B., Tiwari, V.M.Geopotential evidence of missing lithospheric root beneath the eastern Indian shield: an integrated approach.Precambrian Research, Vol. 356, 106116Indiageophysics - seismic

Abstract: The eastern Indian shield consists of Archaean Singhbhum Craton and Proterozoic Chhotanagpur Gneissic Complex sandwiching the Singhbhum Mobile Belt. Since the cratonization of the Singhbhum Craton in Archaean, the growth of the eastern Indian shield took place in time and space through tectono-magmatic processes. The stability of cold and thick lithosphere is fundamental to long-term survival of cratons, whereas the geophysical studies have detected the lithosphere-asthenosphere boundary (LAB) under the eastern Indian shield at depths too shallow to be called stable. We analysed the terrestrial Bouguer gravity anomaly, and satellite-based free-air anomaly, geoid undulation, and elevation data to ascertain the 2D lithospheric density structure across the region. Our density model illustrates that the density inhomogeneity exists in the crust across the three tectonic domains of the eastern Indian shield. The derived crustal model shows an upper and lower crustal density variation from 2740 to 2770 kg/m3, and from 2930 to 2940 kg/m3, respectively, and a reasonably smooth Moho at 37-41 km depth. Towards the north, the Moho undulates from 40 to 43 km under the foreland Ganga basin, whereas in the south, it varies from 38 to 30 km under the Eastern Ghats Mobile Belt and lastly moves to ~20 km in the Bay of Bengal. In the southern part of the Singhbhum Craton, an undissipated lithospheric mantle root is found at a depth of ~150 km. Otherwise, the LAB shallows to ~132 km in the northern Singhbhum Craton and Singhbhum Mobile Belt and then thickens to about 135-140 km depth beneath the Chhotanagpur Gneissic Complex. The foreland Ganga basin toward the extreme north is characterized by a more in-depth LAB lying at a depth of over 200 km. The LAB, in the Bay of Bengal, is at a depth of 112-125 km, except for the Kolkata coast (135 km). Moderate crustal density difference in various crustal domains, as well as an almost smooth crust-mantle boundary at 37-40 km depth, suggests the effect of substantial mafic-ultramafic crustal intrusion and together with the thin (135-140 km) lithosphere reinforces the evidence of thermo-chemical processes that controlled the lithospheric modification in the eastern Indian shield.
DS202109-1489
2021
Sitnikova, M.A., Do Cabo, V., Wall, F., Goldmann, S.Burbankite and pseudomorphs from the main intrusion calcite carbonatite, Lofdal, Namibia: association, mineral composition, Raman spectroscopy.Mineralogical Magazine, Vol. 85, 4, pp. 496-513.Africa, Namibiadeposit - Lofdal

Abstract: The Neoproterozoic Lofdal alkaline carbonatite complex consists of a swarm of carbonatite dykes and two plugs of calcite carbonatite known as the ‘Main’ and ‘Emanya’ carbonatite intrusions, with associated dykes and plugs of phonolite, syenite, rare gabbro, anorthosite and quartz-feldspar porphyry. In the unaltered Main Intrusion calcite carbonatite the principal rare-earth host is burbankite. As burbankite typically forms in a magmatic environment, close to the carbohydrothermal transition, this has considerable petrogenetic significance. Compositional and textural features of Lofdal calcite carbonatites indicate that burbankite formed syngenetically with the host calcite at the magmatic stage of carbonatite evolution. The early crystallisation of burbankite provides evidence that the carbonatitic magma was enriched in Na, Sr, Ba and light rare earth elements. In common with other carbonatites, the Lofdal burbankite was variably affected by alteration to produce a complex secondary mineral assemblage. Different stages of burbankite alteration are observed, from completely fresh blebs and hexagonal crystals through to complete pseudomorphs, consisting of carbocernaite, ancylite, cordylite, strontianite, celestine, parisite and baryte. Although most research and exploration at Lofdal has focused on xenotime-bearing carbonatite dykes and wall-rock alteration, this complex also contains a more typical calcite carbonatite enriched in light rare earth elements and their alteration products.
DS202102-0222
2020
Sizyakov, V.M., Kawalla, R., Brichkin, V.N.Geochemical aspects of the mining and processing of the large tonne mineral resources of the hibinian alkaline massif.Geochemistry, Vol. 80, doi.org/10.1016 /j.chemer.2019 .04.002 5p. PdfRussiadeposit - Khibiny

Abstract: This article presents an analysis of the influences of nature and production factors relating to the chemical-mineralogical composition of products that formed at the stages of mining and processing apatite-nepheline ores in the Khibiny Mountain Massif. It is shown that all main production processes are connected to the formation of dump waste products that are subject to further changes under the influence of exogenous factors, which include conditions of outdoor storage in dumps and sludge accumulators. According to the dead tails (stale tails) of apatite production, the characteristic changes in the chemical-mineralogical composition and grain-size distribution are determined and have a significant effect on the indicators of their mineral processing. The experimental study of dead tails includes processing a set of technological operations, and their flowsheets are also determined. These flowsheets provide a nepheline concentrate of the required composition with indicators no worse than when processing the tailings of the current composition. It is shown that the existing flowsheets for apatite or nepheline concentrate processing lead to the accumulation of significant amounts of mulls associated with the separation of less valuable components of raw materials into the dump waste products, including calcium and silica. The experimental work also demonstrates the conversion process of gypsum wastes produced during the production of phosphoric acid and shows the importance of additional hydrochemical treatment of belite mull to achieve an economically justified ratio of the main and by-products in the processing of aluminosilicate raw materials.
DS202112-1948
2021
Sjoqvist, A.S.L.A geochemical anomaly in the Earth's crust at Norra Karr. ( peralkaline syenite REE)Ph.d. thesis University of Gootenberg Sweden, 105p. PdfEurope, SwedenREE

Abstract: The Norra Kärr alkaline complex in southern Sweden (58°06’N, 14°34’E) is a classic occurrence of agpaitic rocks, which contains a large mineral deposit of rare-earth elements (REE), Zr, and Nb. The complex consists of different varieties of agpaitic peralkaline nepheline syenite that are defined by the occurrence of Na-rich Zr-Ti silicate minerals that contain volatiles F and Cl, including members of the rinkite, catapleiite, and eudialyte groups. The eudialyte-group minerals in Norra Kärr contain different ratios of light to heavy REE across the lithological domains. The magmatic age of the alkaline complex, which is poor in common chronometric minerals, was determined at 1.49 ± 0.01 Ga (2?) by U-Pb dating of zircon that formed during alkali metasomatism (fenitisation) of the surrounding 1.8 Ga granite. The 176Hf/177Hf isotopic ratio of this metasomatic zircon is different from Hf isotopes in the granite, but is identical with the Hf isotope composition of Lu-poor eudialyte from the alkaline complex. The relatively highly radiogenic composition of the Hf isotopes is consistent with a mantle source for the agpaitic magma. New radiometric dating methods were developed. These allow precise in situ measurements of isotope ratios of the Rb-Sr and K-Ca as well as Sm-Nd systems in K-rich and Nd-rich minerals, respectively. Three varieties of alkaline rocks in Sweden were dated by the in situ Rb-Sr method. Biotite Rb-Sr cooling ages in the region east of Norra Kärr are approximately coeval with the emplacement of the alkaline rocks. The complex has been affected by metamorphic overprinting. The foliated and folded fine-grained nepheline syenite is frequently cross-cut by coarse-grained eudialyte- rich pegmatoids. One eudialyte crystal with primary zoning from a pegmatoid was pre-characterised by SEM BSE imaging and in situ chemical analysis by LA-ICP-MS, including full REE composition and precise Sm/Nd ratios. Sampling at a resolution of <200 ?m by micromill provided a sufficient Nd aliquot for routine high-precision ID- TIMS Sm-Nd isotope analysis. Eudialyte crystal growth was dated at 1144 ± 53 Ma (2?) in the undeformed pegmatoid vein, about 350 million years after the magmatic event. The pegmatoid is suggested to have formed by low-temperature partial melting of the peralkaline nepheline syenite host at the margin of Sveconorwegian orogeny. The agpaitic rocks were produced from a magma that formed by extensive fractional crystallisation of an alkali basaltic parental magma. The concentrations of highly enriched incompatible elements in the most differentiated nepheline syenite may indicate 98 % crystallisation of the parental magma.
DS202102-0223
2020
Skublov, S.G., Tolstov, A.V., Baranov, L.N., Melnik, A.E., Levashova, E.V.First data on the geochemistry and U-Pb age of zircons from the kamaphorites of the Tomtor alkaline-ultrabasic massif, Arctic Yakutia.Geochemistry, Vol. 80, doi.org/10.1016 /j.chemer. 2019.04.001 11p. PdfRussiadeposit - Tomtor

Abstract: Zircon from Tomtor syenites and kamaphorites was dated following the U-Pb method (SHRIMP-II), and the distribution of trace and rare-earth elements (REE) was studied at the same zircon point using an ion microprobe. The main zircon population from syenites was dated at 402?±?7 Ma, while the age range of single zircon grains was 700-660 M?. Different-aged zircon groups from syenites exhibited the characteristics of magmatic zircon, but their concentrations of REE and other trace elements differed markedly. The REE distribution in 700-660-M? zircon is consistent with that of the typical zircon from syenites (Belousova et al., 2002), while the heavy rare-earth elements (HREE), P, Ti, and Y concentrations of ca. 400-Ma zircon differ from those of older zircon. This is the first isotope-geochemical study of zircon from kamaphorites, and the U-Pb age of ca. 400 M? is within the error limits with of the main zircon population from syenites. The considerable enrichment of REE, C?, Ti, Sr, Y, Nb, and Ba in zircon from kamaphorites may be partly due to the presence of burbankite microinclusions. The trace-element distribution pattern of zircon from kamaphorites is very similar to the geochemical characteristics of zircon from Tiksheozero carbonatites (Tichomirowa et al., 2013).The new age dates for Tomtor syenites and kamaphorites, consistent with 700-660 M? and ca. 400 M? events, support the zircon (Vladykin et al., 2014) and pyrochlore (Antonov et al., 2017) age dates determined following the U-Pb method and those of biotite obtained following the 40Ar-39Ar method (Vladykin et al., 2014).
DS202102-0224
2020
Skuzovatov, S.Yu., Shatsky, V.S., Ragozin, A.L., Wang, K-L.Ubiquitous post-peak zircon in an eclogite from the Kumdy-Kol, Kokchetav UHP-HP massif ( Kazakhstan): significance of exhumation-related zircon growth and modification in continental-subduction settings.Island Arc, doi:10.1111/ iar.12385 29p. PdfRussia, Kazakhstandeposit - Kumby-Kol

Abstract: U-Pb geochronological, trace?element and Lu-Hf isotopic studies have been made on zircons from ultrahigh?pressure (UHP) mafic eclogite from the Kumdy?Kol area, one of the diamond?facies domains of the Kokchetav Massif (northern Kazakhstan). The peak eclogitic assemblage equilibrated at >?900?°C, whereas the bulk sample composition displays light rare?earth element (LREE) and Th depletion evident of partial melting. Zircons from the eclogite are represented by exclusively newly formed metamorphic grains and have U-Pb age spread over 533-459?Ma, thus ranging from the time of peak subduction burial to that of the late post?orogenic collapse. The major zircon group with concordant age estimates have a concordia age of 508.1?±4.4?Ma, which corresponds to exhumation of the eclogite?bearing UHP crustal slice to granulite? or amphibolite?facies depths. This may indicate potentially incoherent exhumation of different crustal blocks within a single Kumdy?Kol UHP domain. Model Hf isotopic characteristics of zircons (?Hf(t) +1.5 to +7.8, Neoproterozoic model Hf ages of 1.02-0.79?Ga) closely resemble the whole?rock values of the Kumdy?Kol eclogites and likely reflect in situ derivation of HFSE source for newly formed grains. The ages coupled with geochemical systematics of zircons confirm that predominantly late zircon growth occurred in Th-LREE?depleted eclogitic assemblage, that experienced incipient melting and monazite dissolution in melt at granulite?facies depths, followed by amphibolite?facies rehydration during late?stage exhumation?related retrogression.
DS202107-1130
2021
Slabunov, A.I., Balagansky, V.V., Shchipansky, A.A.Mesoarchean to Paleoproterozoic crustal evolution of the Belomorian Province, Fennoscandian Shield, and the tectonic setting of eclogites.Russian Geology and Geophysics, Vol. 62, pp. 525-546. pdfEurope, Finland, Swedeneclogites

Abstract: The Belomorian Province (BP) of the Fennoscandian Shield is a high-grade belt composed of Meso- to Neoarchean tonalite- trondhjemite-granodiorite (TTG) gneisses with subordinate supracrustal complexes. The Belomorian crust is underlined by a thick mantle keel, a structural element typical of Archean cratons. Belomorian rocks were metamorphosed under conditions of mainly high-pressure amphibolite to granulite facies in both Archean and Paleoproterozoic times. The TTG gneisses contain numerous blocks of almost completely retrogressed eclogite (eclogite-1). This paragenetic association of eclogite-1 and gneisses can be classified as an Archean eclogite-TTG gneiss mélange, a component of the Belomorian continental crust produced by subductional, accretionary, and collisional processes of the Belomorian collisional orogeny 2.9-2.66 Ga. The Paleoproterozoic history of the BP comprises of two prominent tectonic periods: (i) early Paleoproterozoic (~2.5-2.4 Ga), related to a superplume, and (ii) late Paleoproterozoic (2.0-1.85 Ga), resulted from crustal reworking during the Lapland-Kola collisional orogeny that produced strong penetrative metamorphic and local deformational overprint. The Paleoproterozoic highest-grade metamorphic overprint is represented by patches of eclogites (eclogite-2) in Paleoproterozoic mafic dikes and eclogite-1. Field relations between eclogite-1 and eclogite-2 are described in the Gridino area of the western coast of the White Sea. So, the BP is a high-grade polymetamorphic belt formed by a superposition of the Neoarchean Belomorian and Paleoproterozoic Lapland-Kola orogenies, whose characteristic features are eclogites produced by subduction and collision.
DS202105-0790
2021
Slezak, P., Spandler, C., Border, A., Whittock, K.Geology and ore genesis of the carbonatite-associated Yangibana REE district, Gascoyne Province, Western Australia.Mineralium Deposita, 10.1007/s00126-020-01026-z 20p. PdfAustraliaREE

Abstract: The Yangibana rare earth element (REE) district consists of multiple mineral deposits/prospects hosted within the Mesoproterozoic Gifford Creek Carbonatite Complex (GCCC), Western Australia, which comprises a range of rock types including calcite carbonatite, dolomite carbonatite, ankerite-siderite carbonatite, magnetite-biotite dykes, silica-rich alkaline veins, fenite, glimmerites and what have historically been called “ironstones”. The dykes/sills were emplaced during a period of extension and/or transtension, likely utilising existing structures. The Yangibana REE deposits/prospects are located along many of these structures, particularly along the prominent Bald Hill Lineament. The primary ore mineral at Yangibana is monazite, which is contained within ankerite-siderite carbonatite, magnetite-biotite dykes and ironstone units. The ironstones comprise boxwork-textured Fe oxides/hydroxides, quartz, chalcedony and minor monazite and subordinate rhabdophane. Carbonate mineral-shaped cavities in ironstone, fenite and glimmerite alteration mantling the ironstone units, and ankerite-siderite carbonatite dykes altering to ironstone-like assemblages in drill core indicate that the ironstones are derived from ankerite-siderite carbonatite. This premise is further supported by similar bulk-rock Nd isotope composition of ironstone and other alkaline igneous rocks of the GCCC. Mass balance evaluation shows that the ironstones can be derived from the ankerite-siderite carbonatites via significant mass removal, which has resulted in passive REE concentration by ~?2 to ~?10 times. This mass removal and ore tenor upgrade is attributed to extensive carbonate breakdown and weathering of ankerite-siderite carbonatite by near-surface meteoric water. Monazite from the ironstones has strong positive and negative correlations between Pr and Nd, and Nd and La, respectively. These relationships are reflected in the bulk-rock drill assays, which display substantial variation in the La/Nd throughout the GCCC. The changes in La/Nd are attributed to variations in primary magmatic composition, shifts in the magmatic-hydrothermal systems related to CO2 versus water-dominated fluid phases, and changes in temperature.
DS202107-1131
2021
Smart, K., Tappe, S., Woodland, A.B., Simonetti, A.Metasomatised eclogite xenoliths from the central Kaapvaal craton as probes of a seismic mid-lithospheric discontinuity.Chemical Geology, Vol. 578, 120286, 33p. PdfAfrica, South Africageophysics - seismics

Abstract: The central region of the Kaapvaal craton is relatively understudied in terms of its lithospheric mantle architecture, but is commonly believed to be significantly impacted by post-Archean magmatism such as the ca. 2056 Ma Bushveld large igneous event. We investigate a collection of 17 eclogite xenoliths from the Cretaceous Palmietfontein kimberlite at the Western Limb of the Bushveld Complex for their mineralogical compositions (major and trace elements, plus Fe3+ contents), as well as stable oxygen and radiogenic Pb isotopic compositions to gain further insights into the nature and evolution of the central Kaapvaal cratonic mantle lithosphere. New U/Pb age determinations on mantle-derived zircon yield a magma emplacement age of ca. 75 Ma for the Palmietfontein Group-1 kimberlite, which means that the entrained eclogite xenoliths may record a protracted metasomatic history from the Proterozoic through to most of the Phanerozoic eon. Garnet ?18O values of up to 6.9‰ and positive Eu anomalies for the bulk rocks suggest seawater-altered oceanic crustal protoliths for the Palmietfontein eclogite xenolith suite, which is typical for the eclogitic components of the Kaapvaal root and other cratonic mantle sections worldwide. However, several features of the Palmietfontein eclogites are commonly not observed in other mantle-derived eclogite xenolith suites. Firstly, the samples studied yield relatively low equilibration pressures and temperatures between 2.7 and 4.5 GPa and 740-1064 °C, indicating a relatively shallow residence between 90 and 150 km depths. Secondly, euhedral coarse amphibole is present in several eclogite nodules where it is in equilibrium with ‘touching’ garnet, supporting eclogite residence within the amphibole stability field at uppermost lithospheric mantle conditions. Thirdly, primary omphacitic clinopyroxene is often overgrown by diopside, and is significantly enriched in incompatible trace elements. The clinopyroxene is also characterized by elevated 206Pb/204Pb of 17.28-19.20 and 207Pb/204 Pb of 15.51-16.27, and these Pb isotopic compositions overlap with those of Mesozoic Group-2 kimberlites from the Kaapvaal craton. Our results show that eclogites reside at ~85 km depth beneath the central Kaapvaal craton as part of a layer that corresponds to an approximately 50 km thick seismically-detected mid-lithospheric discontinuity. Mid-lithospheric discontinuities have been interpreted as metasomatic fronts formed by focussed crystallization of hydrous mineral phases from enriched volatile-bearing melts, and as such the strongly overprinted amphibole-bearing eclogite xenoliths from Palmietfontein may represent a physical expression of such seismically anomalous metasomatic layer at mid-lithospheric depth. Our Pb isotope data suggest that the focussed metasomatism can be attributed to volatile-rich melts reminiscent of potassic Group-2 kimberlites, which have been invoked in MARID-style metasomatic overprinting of the lower lithospheric mantle beneath the western Kaapvaal craton. However, the relatively low fO2 recorded by the Palmietfontein eclogites (minimum FMQ-4.5) suggests that the metasomatism at mid-lithospheric depth was less protracted compared to the more intensive and oxidizing metasomatism typically observed near the base of cratonic mantle roots. While it is possible that Proterozoic magmatic events were responsible for the focussed mid-lithospheric metasomatism of the Kaapvaal mantle, on the basis of the Pb isotope constraints the Palmietfontein eclogites were most likely overprinted during ca. 120 Ma Group-2 kimberlite magmatism.
DS202102-0225
2020
Smart, K.A., Tappe, S., Woodland, A.B., Greyling, D.R., Harris, C., Gussone, N.Constraints on Archean crust recycling and the origin of mantle redox variability from delta 44/40 Ca - delta 18O - fO2 signatures of cratonic eclogites.Earth and Planetary Science Letters, doi.org/10.1016/ j.epsl.2020. 116720 19p. PdfAfrica, South Africadeposit - Bellsbank

Abstract: The nature of the deep calcium geochemical cycle through time is unresolved, in part due to the dearth of information about the calcium isotope composition of Archean recycled oceanic crust. Remnants of such ancient oceanic crust are preserved in the form of cratonic mantle eclogites, brought to surface as xenoliths in kimberlite magma eruptions. The ? 44 / 40Ca of fresh mantle-derived eclogite xenoliths (i.e., garnet and omphacite mineral separates) from the Bellsbank kimberlite on the Kaapvaal craton in South Africa are presented here in combination with their trace element compositions, garnet Fe3+ contents and ?18O values. The studied Bellsbank eclogite xenoliths have geochemical compositions that indicate oceanic crustal protoliths, with bulk Al2O3 from 15 to 27 wt.%, Eu anomalies from 0.8 to 2.6 and, significantly, garnet ?18O values from +2.7 to +6.2‰. Garnet Fe3+/?Fe contents yield logfO2(?FMQ) values between -4.0 and -1.2 for a depth range of 110-180 km, recording strong redox heterogeneity of the eclogite component within the Archean Kaapvaal mantle lithosphere. Reconstructed bulk eclogite MgO contents correlate negatively with fO2, suggesting that the redox compositions are related to magmatic differentiation during oceanic crust formation, excluding secondary metasomatic overprints. These data may thus emphasize that Archean basaltic oceanic crust had a similarly variable redox composition to modern MORB-type crust. Reconstructed bulk ? 44 / 40Ca values for the Bellsbank eclogites range from +0.28 to +1.56‰. Although some of the xenoliths have ? 44 / 40Ca values that overlap with the average mantle composition and modern MORB (+0.94 ± 0.1 and +0.83 ± 0.05‰), half of our dataset shows excursions to more extreme Ca isotopic compositions. Both higher and lower ? 44 / 40Ca relative to mantle compositions are recorded by the eclogites, with a general negative correlation with ?18O suggestive of seawater-alteration of oceanic crust. The combined low ? 44 / 40Ca (+0.28‰) and ?18O (+3.4‰) measured for one eclogite xenolith may record a subtle imprint by carbonate-rich mantle melts, which are known to contain isotopically light calcium contributed by recycled sediments. In contrast, the high ? 44 / 40Ca of up to +1.56‰ for some eclogite xenoliths, coupled with strong LREE depletion, can be explained by calcium isotope fractionation during partial melting. The protracted history of recycled oceanic crust as probed by cratonic mantle eclogites is recorded by their highly variable ? 44 / 40Ca-?18O-fO2 signatures. Whereas some of this heterogeneity can be linked to processes that operated on the Archean ocean floor such as seawater-alteration of basaltic crust, other sources of compositional variability are introduced by loss and addition of melts during subduction recycling and mantle residence. The observed ? 44 / 40Ca complexity of ancient recycled oceanic crust components at the scale of a single mantle-derived eclogite xenolith suite implies that mantle plume sourced intraplate magmas should reveal similarly strong calcium isotope variations contributed by apparently essential recycled crust components - as observed in the global oceanic island basalt record.
DS202107-1132
2021
Smit, K.Preservation of Archaean mantle. *** see outline on cover of July 2021GSSA, https://www.youtube.com/watch?v=N_oS7FQQZ3MRussia, Scandinaviadeposit - Grib
DS202104-0608
2021
Smith, E.A look at kimberlites: the volcanoes that carry diamonds.gia.org and knowledge session utube, 44280Globalkimberlite genesis

Abstract: Natural diamonds crystallize at great depths, far deeper than we can dig or drill into the Earth. So how is it that diamonds can be found among us? The answer lies in rare and unusual volcanoes called kimberlites. These deeply-seated volcanic eruptions can sometimes pick up diamonds, along with other minerals and rock fragments, and blast them to the top. Think of kimberlites as elevators that diamonds use to ride up to Earth’s surface! Tune in as GIA Research Scientist Dr. Evan Smith digs deeper into these super-charged volcanoes and uncovers the role they play, not just in transporting gem diamonds, but in revealing the geological workings of the Earth.
DS202105-0791
2021
Smith, E.Deep diamonds contain evidence of deep Earth recycling processes.Phys.org, https://phys-org.cdn.amp project.org/c /s/phys.org/news /2021-03-deep-diamonds- evidence-deep-earth- recycling.ampMantlesubduction
DS202112-1949
2021
Smith, E.Understanding the origin of natural diamonds.GIA Knowledge session, Oct 21, youtube.comGlobaldiamond genesis

Abstract: Do you know your diamond’s origin? Join GIA Research Scientist Dr. Evan Smith and GIA Global Business Development Director Matt Tratner as they explain why diamond origin is important in today's marketplace, some of the challenges that exist in identifying a diamond's country of origin, and how GIA uses the scientific matching process to confirm a diamond's origin.
DS202112-1950
2021
Smith, E., Nestola, F.Super-deep diamonds: emerging deep mantle insights from the past decade.In: Mantle Convection and Surface Expressions, Geophysical Monograph, editors Marquarte, H., Ballmer, M., Vottaar, S., Konter, J., no. 263, 14p. PdfMantleSuper-deep diamonds

Abstract: Some rare diamonds originate below the lithosphere, from depths of 300-800 km and perhaps deeper. Ongoing sublithospheric or super-deep diamond research is providing new insight into the mantle and the hidden consequences of plate tectonics. Here we highlight several advances in the past decade, stemming from the discovery of inclusions from oceanic crust at lower mantle depths; inclusions having geochemical imprints of low-degree car-bonatitic melt, possibly from subducted slabs; hydrous ringwoodite and other signs of deep water; major mantle minerals preserved in their original crystal structure, including ringwoodite and CaSiO 3-perovskite; additional diamond varieties with a super-deep origin (CLIPPIR and type IIb diamonds), greatly increasing the known prevalence and diversity of super-deep diamonds; and consistent, recurring Fe-Ni-C-S metallic melt inclusions from depths of 360-750 km. Redox freezing of oxidized, slab-derived fluid/melt upon interaction with ambient metal-saturated mantle appears to be a phenomenon broadly recorded by many super-deep diamonds. Melting of car-bonate, as well as dehydration reactions, from subducted slabs are relevant mechanisms that may generate fluid/ melt contributing to diamond growth. Fe-Ni metal, with dissolved carbon, sulfur, and other elements is also indicated as a possible diamond-forming melt. These mobile and dynamic phases are agents of chemical mass-transfer in the deep mantle.
DS202105-0792
2021
Smith, E., Ni, P., Shirey, S.B., Richardson, S.H., Wang, W., Shahar, A.Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor.Science Vol. 74, https://advances. sciencemag.org /content/7/14/ eabe9773 9p.Mantlesubduction

Abstract: Subducting tectonic plates carry water and other surficial components into Earth’s interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni-rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (?56Fe = 0.79 to 0.90‰) and unradiogenic osmium (187Os/188Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.
DS202107-1133
2021
Smith, E.M., Nestola, F.Super-deep Diamonds: emerging mantle insights from the past decade.Mantle Convection and Surface Expressions, Geophysical Monograph, No. 263, Chapter 7, pp. 179- 14p. PdfMantleinclusions, subduction, CLIPPER

Abstract: Some rare diamonds originate below the lithosphere, from depths of 300-800 km and perhaps deeper. Ongoing sublithospheric or super-deep diamond research is providing new insight into the mantle and the hidden consequences of plate tectonics. Here we highlight several advances in the past decade, stemming from the discovery of inclusions from oceanic crust at lower mantle depths; inclusions having geochemical imprints of low-degree car-bonatitic melt, possibly from subducted slabs; hydrous ringwoodite and other signs of deep water; major mantle minerals preserved in their original crystal structure, including ringwoodite and CaSiO 3-perovskite; additional diamond varieties with a super-deep origin (CLIPPIR and type IIb diamonds), greatly increasing the known prevalence and diversity of super-deep diamonds; and consistent, recurring Fe-Ni-C-S metallic melt inclusions from depths of 360-750 km. Redox freezing of oxidized, slab-derived fluid/melt upon interaction with ambient metal-saturated mantle appears to be a phenomenon broadly recorded by many super-deep diamonds. Melting of car-bonate, as well as dehydration reactions, from subducted slabs are relevant mechanisms that may generate fluid/ melt contributing to diamond growth. Fe-Ni metal, with dissolved carbon, sulfur, and other elements is also indicated as a possible diamond-forming melt. These mobile and dynamic phases are agents of chemical mass-transfer in the deep mantle.
DS202103-0409
2021
Smith, E.M., Nestola, F., Paqualetto, L., Zorzi, F., Secco, L., Wang, W.The new mineral crowningshieldite: a high temperature NiS polymorph found in a type IIa diamond from the Letseng mine, Lesotho.American Mineralogist, Vol. 106, pp. 301-308. pdfAfrica, Lesothodeposit - Letseng

Abstract: Crowningshieldite is the natural analog of the synthetic compound ?-NiS. It has a NiAs-type structure and is the high-temperature polymorph relative to millerite (?-NiS), with an inversion temperature of 379 °C. Crowningshieldite is hexagonal, space group P63/mmc, with a = 3.44(1) Å, c = 5.36(1) Å, V = 55.0(2) Å3, and Z = 2. It has an empirical formula (Ni0.90Fe0.10)S and dcalc = 5.47(1) g/cm3. The five strongest lines in the powder X-ray diffraction data are [dmeas in angstroms (I) (hkl)]: 1.992 (100) (102), 1.718 (55) (110), 2.978 (53) (100), 2.608 (35) (101), and 1.304 (17) (202). Crowningshieldite was found as part of a multiphase inclusion in a gem-quality, colorless, type IIa (containing less than ~5 ppm N) diamond from the Letseng mine, Lesotho. The inclusion contains crowningshieldite along with magnetite-magnesioferrite, hematite, and graphite. A fracture was observed that extended from the inclusion to the diamond exterior, meaning that fluids, possibly kimberlite-related, could have penetrated into this fracture and altered the inclusion. Originally, the inclusion might have been a more reduced, metallic Fe-Ni-C-S mixture made up of cohenite, Fe-Ni alloy, and pyrrhotite, akin to the other fracture-free, pristine inclusions within the same diamond. Such metallic Fe-Ni-C-S primary inclusions are a notable recurring feature of similar type IIa diamonds from Letseng and elsewhere that have been shown to originate from the sublithospheric mantle. The discovery of crowningshieldite confirms that the ?-NiS polymorph occurs in nature. In this case, the reason for its preservation is unclear, but the relatively iron-rich composition [Fe/(Fe+Ni) = 0.1] or the confining pressure of the diamond host are potential factors impeding its transformation to millerite. The new mineral name honors G. Robert Crowningshield (1919-2006) (IMA2018-072).
DS202106-0971
2021
SmithsonianEarth's oldest minerals date onset of plate tectonics to 3.6 billion years ago: ancient zircons from the Jack Hills of western Australia hone date of an event that was crucial to making the planet hospitable to life. *** not specific to diamondsScience Daily, www.sciencedaily.com /releases/2021/05/ 210514134159.htmMantletectonics

Abstract: Scientists provide new evidence that modern plate tectonics, a defining feature of Earth and its unique ability to support life, emerged roughly 3.6 billion years ago. The study uses zircons, the oldest minerals ever found on Earth, to peer back into the planet's ancient past.
DS202107-1134
2021
Snyder, D.B., Savard, G., Kjarssgaard, B.A., Vaillancourt, A., Thurston, P.C., Ayer, J.A., Roots, E.Multidisciplinary modeiling of mantle lithosphere structure within the Superior craton, North America.Geochemistry, Geophysics, Geosytems, 20p. PdfCanada, United Statesgeophysics - seismics

Abstract: Structure within the Earth is best studied in three dimensions and using several coincident overlays of diverse information with which one can best see where unusual properties match up. Here we use regional surfaces causing discontinuities in seismic waves a few hundred kilometers deep in the Earth, intersected and thus calibrated by rebuilt rock columns using rare rock samples erupted to the surface in two locations. Electrically conductive regions can be mapped using natural (magnetotelluric) currents. East- and west-dipping seismic discontinuity surfaces match surface structures that developed about 1.8 billion years ago marginal to the Superior crustal block. Surfaces dipping to the southeast and northwest match some boundaries between crustal blocks that are over 2.5 billion years old, but many such crustal boundaries trend more east-west. Conductive rocks appear more commonly above these discontinuity surfaces where gas-rich fluids apparently flowed and that the discontinuities somehow filtered these fluids. The mismatch in orientation and dip between the most ancient deep and exposed structures suggests that plate tectonic processes operating today differed earlier than 2.5 billion years ago.
DS202103-0410
2021
Sokol, A.G., Kruk, A.N.Role of CO2 in the evolution of kimberlite magma: experimental constraints at 5.5GPa and 1200-1450 C.Lithos, in press available, 13p. PdfGlobalmagmatism

Abstract: According to the existing models of kimberlite origin, free exsolution CO2 may be an important agent in the evolution of primary kimberlite magma and initiation of crack propagation. We study the reaction of garnet lherzolite with carbonatitic melt rich in molecular CO2 and H2O in experiments at 5.5 GPa and 1200-1450 °C. The experimental results show that carbonation of olivine with formation of orthopyroxene and magnesite can buffer the contents of molecular CO2 in the melt, which impedes immediate separation of CO2 fluid from melt equilibrated with the peridotite source. The solubility of molecular CO2 in the melt decreases from 20 -25 wt% at 4.5-6.8 wt% SiO2 typical of carbonatite to below 7-12 wt% in more silicic melts with 26-32 wt% SiO2. Interaction of garnet lherzolite with carbonatitic melt (at a weight proportion of 2:1) in the presence of 2-3 wt% H2O and 17-24 wt% of total CO2 at 1200-1450 °C yields low-SiO2 (<10 wt%) alkali?carbonated melts, which shows multiphase saturation with magnesite-bearing garnet harzburgite. Thus, carbonatitic melts rich in volatiles can originate in a harzburgite source at moderate temperatures common to continental lithospheric mantle (CLM). Excessive volatiles may be present in carbonatitic melts not equilibrated with the peridotitic source due to the formation of metasomatic reaction zones. Having separated from the source, carbonatitic magma enriched in molecular CO2 and H2O can rapidly become more silicic (>25 wt% SiO2) by dissolution and carbonation of entrapped peridotite. Furthermore, interaction of garnet lherzolite with carbonatitic melt rich in K, CO2, and H2O at 1350 °C produces immiscible carbonate-silicate and K-rich silicate melts. Quenched silicate melt develops globules of foam-like vesicular glass. Differentiation of immiscible melts early during their ascent may equalize the compositions of kimberlite magmas generated in different CLM sources. The fluid phase can release explosively from ascending magma at lower pressures as a result of SiO2 increase which reduces the solubility of CO2 and due to the decarbonation reaction of magnesite and orthopyroxene.
DS202110-1637
2021
Solovev, K.A., Golovin, A.V., Sharygin, I.S., Pokhilenko, N.P.Origin of epigenetic iron-rich olivine in lherzolite xenolith from the Udachnaya kimberlite pipe ( Siberian craton).Doklady Earth Sciences, Vol. 499, 2, pp. 619-622.Russiadeposit - Udachnaya

Abstract: Olivine is the most common rock-forming mineral of the majority of the lithospheric mantle rocks beneath ancient cratons. This study provides the information about an epigenetic olivine in a lherzolite xenolith from the Udachnaya kimberlite pipe (Siberian craton), which is characterized by lower Mg# compared to the rock-forming one (Mg# = 87.4). The iron-rich olivine has been observed in the epigenetic mineral assemblage that forms a kelyphite shell around the rock-forming garnet. Olivine from the kelyphite shell occurs as both homogeneous grains (Mg# = 84.3-85.9) and zoned grains (Mg# = 85.1-87.5). The major and minor elements asymmetric zoning patterns have been found in the rock-forming olivine grains at the contact with the kelyphite shell. These olivine grains have an outer low Mg# (up to 85.9) zone at the contact with the kelyphite shell as the epigenetic olivine grains in the kelyphite shell. We suggest that the iron-rich epigenetic olivine was produced as the result of a reaction between the rock-forming garnet and the primitive kimberlite melt. During this reaction, a hybrid melt was formed in the interstitial space. The hybrid melt was iron-enriched relative to the kimberlite melt. The source of iron for the micro-portions of the interstitial hybrid melt was the rock-forming garnet.
DS202112-1951
2021
Sonin, V., Zhimulev, E., Chepurov, A., Gryaznov, I., Chepurov, A., Afanasiev, V., Poikilenko, N.Experimental etching of diamonds: extrapolation to impact diamonds from the Popigai Crater ( Russia)MDPI, Vol. 11, 11p. Pdf Russiadeposit - Popigai

Abstract: Diamond etching in high-temperature ambient-pressure experiments has been performed aimed to assess possible postimpact effects on diamonds in impact craters, for the case of the Popigai crater in Yakutia (Russia). The experiments with different etchants, including various combinations of silicate melts, air, and inert gases, demonstrated the diversity of microstructures on {111} diamond faces: negative or positive trigons, as well as hexagonal, round, or irregularly shaped etch pits and striation. The surface features obtained after etching experiments with kimberlitic diamonds are similar to those observed on natural impact diamonds with some difference due to the origin of the latter as a result of a martensitic transformation of graphite in target rocks. Extrapolated to natural impact diamonds, the experimental results lead to several inferences: (1) Diamond crystals experienced natural oxidation and surface graphitization during the pressure decrease after the impact event, while the molten target rocks remained at high temperatures. (2) Natural etching of diamonds in silicate melts is possible in a large range of oxidation states controlled by O2 diffusion. (3) Impact diamonds near the surface of molten target rocks oxidized at the highest rates, whereas those within the melt were shielded from the oxidizing agents and remained unchanged.
DS202107-1135
2021
Sonin, V.M., Gryaznov, I.A., Chepurov, A. I., Pokhilenko, N.P.H2O as a possible initiator of surface graphitization of impact diamonds.Doklady Earth Sciences, Vol. 498, 1, pp. 388-391.Russiadiamond crystallography
DS202104-0609
2020
Sonin, V.M., Zhimulev, E.I., Chepurov, A.A., Lindenblot, E.S., Loginova, A.M., Shcheglov, D.V., Pomazanskii, B.S., Afanasiev, V.P., Chepurov, A.I.Dissolution of natural octahedral diamonds in an Fe-S melt at high pressure.Geology of Ore Deposits, Vol. 62, 6, pp. 497-507. pdfRussia, Yakutiadeposit Yubileinaya

Abstract: An experimental study was carried out on the dissolution of natural octahedral diamonds from the Internatsionalnaya and Yubileinaya kimberlite pipes (Yakutia) in an Fe-S melt at 4 GPa and 1450-1500°C with different sulfur contents (10-25 wt %). It was found that with an increase in sulfur content in the iron melt, the degree of diamond dissolution sharply decreases. The stationary (final) shape of diamond crystal dissolution under the achieved conditions corresponds to an octahedroid with trigonal etching layers, which is confirmed by photogoniometry. Diamonds with similar morphology are common in kimberlite pipes, especially in mantle xenoliths from kimberlites. It was concluded that diamonds with this shape did not undergo natural dissolution in a kimberlite magma, but, similar to flat-faced octahedra, were probably isolated from it in xenoliths. Therefore, the higher the content of octahedroid-shaped diamonds with trigonal layers in a deposit, the smaller the direct influence of an aggressive kimberlite magma on the diamond content.
DS202105-0793
2021
South African Diamond Producers OrganizationStrategy for short and medium term.SAPP, 9p. Pdf executive summaryAfrica, South Africaalluvials, legal
DS202109-1490
2021
Spaggiari, R.I. de Wit, M.C.J.Diamondiferous alluvial deposits of the Longatshimo Valley, Kasai Province, southern DRC: a sedimentary and economic model of a central African diamond placer.South African Journal of Geology, Vol. 124, pp. 499-518.Africa, Democratic Republic of Congodeposit - Kasai

Abstract: The Kasai alluvial field in southern Democratic Republic of Congo (DRC) is part of central Africa’s largest diamond placer that has produced more than 200 million carats, mainly derived from Quaternary deposits. A small part of these deposits, along and within the Longatshimo River, is the subject of this study providing a glimpse into the alluvial history of the Kasai diamond placer. This work documents their sedimentological and diamond mineralization attributes, as well as their emplacement processes, which can inform future exploration models. The key controls of this placer formation, notably Quaternary climatic variations, fluvial landscape evolution and bedrock conditions are also evaluated. A consequence of the interplay among these processes is that diamond supply (from Cretaceous alluvial sources), recycling and concentration were most pronounced and consistent, in the Late Quaternary. Alluvial diamond mineralization in this central African region thus evolved differently to those in southern Africa. Based on exploration results in the Longatshimo Valley, diamond concentration improves but diamond size diminishes with decreasing deposit age, and thus the modern river sediments contain the highest abundance but smallest diamonds. This is opposite to the grade and diamond size trend that characterises southern African fluvial diamond placers. The Longatshimo River study offers insight into the Kasai alluvial field, and its placer model is expected to be applicable to the exploration of other central African diamond placers.
DS202111-1786
2021
Spencer, C.J.Enigmatic mid-proterozoic orogens: hot, thin, and low.Geophysical Research Letters, doi:10.1029/2021GL093312Mantleorogeny

Abstract: Orogenesis is the process whereby tectonic plates converge and mountain systems are created. In the case of the Andes and Himalayas, orogenesis resulted in significant thickening of the continental crust. Recent attempts to provide geochemical proxies for crustal thickness have allowed geologists to track the thickness of the crust through geologic time. One period of time in particular between 1850 and ?850 million years ago-the mid-Proterozoic-was characterized as having relatively thin crust. Some have argued this is evidence for a period of "orogenic quiescence." However, the geologic record is rife with ancient orogenic belts during this time as evidenced by the metamorphic and igneous rock records. In particular, the metamorphic rocks display higher than normal temperature/pressure ratios indicating unusually hot crust. We propose that the thin crust at this time is a product of high temperatures resulting in greater crustal flow and therefore lower mountain ranges.
DS202101-0033
2020
Spengler, D., Alifirova, T.A.Formation of Siberian cratonic mantle websterites from high - Mg magmas.Lithos, in press available 13p. PdfRussiadeposit - Mir, Obnazhennaya, Udachnaya

Abstract: Garnet-(olivine) websterite xenoliths from the lithospheric mantle of the central and northeastern parts of the Siberian Craton contain exsolution microstructures after Si- and Ti-rich precursor garnets. We petrographically, geochemically, and thermobarometrically investigated 13 such xenoliths from the Mir, Obnazhennaya, and Udachnaya kimberlite pipes. All samples contain garnet grains with needle- to lamellae-shaped precipitates (up to 3.0?vol%), including Ti-oxide and/or pyroxene. Orthopyroxene and clinopyroxene grains host oriented lamellae of complementary Ca-rich and Ca-poor pyroxene, respectively, in addition to lamellae of garnet and Ti- and/or Cr-oxides. The common exsolution lamellae assemblages in garnet and pyroxene imply that exsolution occurred during cooling from high-temperature precursors. Exsolution is unlikely to have resulted from variations in pressure, given experimental and thermodynamic constraints. Host mineral partitioning of transition metal and lanthanide elements with different diffusivities record temperatures that range between those of local geotherms and a dry pyroxenite solidus. Inferred magmatic minimum temperatures of 1500-1700?°C satisfy the physical conditions predicted from experimental studies of the solubility of excess Si and Ti in garnet. Granular inclusions of all major minerals within each other imply an overlapping crystallisation history. The reconstructed compositions of the websterite whole-rocks have high MgO contents (15.7-35.7?wt%). A plot of MgO/SiO2 versus SiO2 forms an array, apart from the compositions of natural websterites that formed by interaction of peridotite with basaltic or siliceous melts. The array overlaps the compositional range of komatiite flows from Commondale and Barberton, South Africa, including spinifex, massive, and cumulate subtypes of komatiites. Other major and minor element abundances and ratios of the Siberian websterite suite resemble those of South African Al-enriched komatiites and are distinct from melt-rock reaction websterites. Therefore, the mineral microstructures and geochemistry of the Siberian websterites are suggestive of the former presence of a thermal anomaly. We propose that mantle plume activity or a similar form of lower-mantle ascent played a major role in stabilising cratonic nuclei before amalgamation of the present-day Siberian Craton.
DS202103-0411
2018
Stagno, V.Carbon, carbides, carbonates and carbonatitic melts in the Earth's interiors. *** NOTE DATEresearchgate, doi:10.31223/ osf.io/uhSc8 40p. PdfMantlecarbonatite

Abstract: Over recent decades, many experimental studies have focused on the effect of CO2 on phase equilibria and melting behaviour of synthetic eclogites and peridotites as a function of pressure and temperature. These studies have been of fundamental importance to understanding the origin of carbonated magmas varying in composition from carbonatitic to kimberlitic. The occurrence of diamonds in natural rocks is further evidence of the presence of (reduced) carbon in the Earth's interior. The oxygenation of the Earth's interior (i.e. its redox state) through time has strongly influenced the speciation of carbon from the mantle to mantle-derived magmas and, in turn, to the volcanic gases released to the atmosphere. This paper explains how the knowledge of the oxygen fugacity recorded by mantle rocks and determined through the use of appropriate oxy-thermobarometers allows modelling of the speciation of carbon in the mantle, its mobilization in the asthenospheric mantle by redox partial melting, and its sequestration and storage during subduction by redox freezing processes. The effect of a gradual increase of the mantle fO2 on the mobilization of C is here discussed along with the main variables affecting its transport by subduction into the mantle.
DS202103-0412
2021
Stanley, S.Subduction may recycle less water than thought.Eos, 102, doi.org/10.1029 /2021EO154530Mantlesubduction

Abstract: When one tectonic plate dives beneath another at a subduction zone, it recycles huge amounts of water and other chemicals into Earth’s mantle. The sinking plate carries seawater trapped in sediments and crust or chemically bound in minerals like serpentine. Later release of this water in the mantle contributes to key geological processes, such as earthquakes and the formation of volcano-feeding magma. By volume, the largest portion of a subducting plate is its bottom layer, which comprises upper mantle material. Estimates of the amount of water in downgoing slabs of upper mantle vary widely: Some suggest that worldwide, subduction zones have swallowed more than two oceans’ worth of water in the past 540 million years. However, new research by Miller et al. suggests that water transport at the Middle America Trench subduction zone is an order of magnitude less than previously estimated. As a plate approaches a subduction zone, it bends downward, causing faults to form. Models and earlier observations have suggested that this bending and faulting allow seawater to infiltrate into the upper mantle, where it fills cracks in fault zones, reacts with olivine to produce serpentine, and is later carried deeper into the subduction zone. Previous estimates of how much water reaches the upper mantle along bending faults have relied on measurements of the speed of seismic waves as they pass through a subducting plate. However, those measurements and estimates could not discern whether the upper mantle layer is uniformly hydrated or whether water is confined to bending fault zones. To address that limitation, the new study accounted for seismic anisotropy characterizing how the speed of seismic waves depends on the direction they travel through a material. The researchers used data collected by seafloor seismometers to measure seismic anisotropy along the Middle America Trench near Nicaragua, which enabled a much more detailed picture of upper mantle hydration. The data revealed that in the region studied, water storage in the upper mantle is limited to serpentinized fault zones that thin rapidly with depth, suggesting that fault dynamics and serpentinization reaction kinetics prevent seawater from hydrating the mantle between bending faults. New estimates of water transport that incorporate this finding are an order of magnitude lower than previous estimates for the Middle America Trench. Because the same processes occur at other subduction zones, the researchers report that far less water may be transported worldwide than previously estimated. (Journal of Geophysical Research: Solid Earth, https://doi.org/10.1029/2020JB020982, 2021)
DS202104-0610
2021
Steele-MacInnis, M., Manning, C.E.Hydrothermal properties of geologic fluids.Elements, Vol. 16, pp. 375-380.Mantlewater

Abstract: Aqueous fluids are critical agents in the geochemical evolution of Earth’s interior. Fluid circulation and fluid-rock reactions in the Earth take place at temperatures ranging from ambient to magmatic, at pressures from ambient to extreme, and involve fluids that range from nearly pure H2O through to complex, multicomponent solutions. Consequently, the physical and chemical properties of hydrothermal fluids vary widely as functions of geologic setting; this variation strongly impacts fluid-driven processes. This issue will focus on the nature of geologic fluids at hydrothermal conditions and how such fluids affect geologic processes in some major settings.
DS202107-1136
2021
Steiner, R.A., Rooney, T.O.PiAutoStage: an open-source 3 D printed tool for the automatic collection of high-resolution microscope imagery.Geochemistry, Geophysics, Geosytems, 17p. PdfGlobalPiAutoStage

Abstract: The instruction of Earth science courses often relies upon the observation of in-hand specimens which poses a significant barrier to delivering courses in an online format. While there are abundant resources for the digital delivery of 3-dimensional images of rock specimens, there are limited avenues to deliver microscopic materials to students in a manner that approximates the in-person experience. We have developed an accessible solution for creating and delivering microscopic educational materials to students. Our solution is an open-source device that combines a 3D-printed mechanism, to move a sample around the microscope, and an integrated camera that are both controlled by a central, inexpensive computer. The PiAutoStage system can be attached to almost any microscope and is capable of automatically imaging an entire microscopic sample by combining hundreds of collected images into a single panorama. We have found that the images permit an experience comparable to using a microscope and have the additional benefit of allowing students to examine, not only the field of view permitted in a microscope but an entire sample at once. The system is low-cost and utilizes widely available components making it universally accessible to any institution with an existing microscope.
DS202101-0034
2020
Stern, R.J.The Mesoproterozoic single - lid tectonic episode: prelude to modern plate tectonics.GSA Today, Vol. 30, pp. 4-10. pdfMantletectonics

Abstract: The hypothesis that the Mesoproterozoic (1600-1000 Ma) tectonic regime was a protracted single-lid episode is explored. Single-lid tectonic regimes contrast with plate tectonics because the silicate planet or moon is encased in a single lithospheric shell, not a global plate mosaic. Single-lid tectonics dominate among the Solar System’s active silicate bodies, and these show a wide range of magmatic and tectonic styles, including heat pipe (Io), vigorous (Venus), and sluggish (Mars). Both positive and negative evidence is used to evaluate the viability of the Mesoproterozoic single-lid hypothesis. Four lines of positive evidence are: (1) elevated thermal regime; (2, 3) abundance of unusual dry magmas such as A-type granites and anorthosites; and (4) paucity of new passive continental margins. Negative evidence is the lack of rock and mineral assemblages formed by plate-tectonic processes such as ophiolites, blueschists, and ultra high-pressure terranes. Younger plate-tectonic-related and Mesoproterozoic mineralization styles contrast greatly. Paleomagnetic evidence is equivocal but is permissive that Mesoproterozoic apparent polar wander paths of continental blocks did not differ significantly. These tests compel the conclusion that the Mesoproterozoic single-lid hypothesis is viable.
DS202103-0413
2021
Stoudmann, N., Reibelt, L.M., Rakotomalala, A.G., Randriamanjakahasina, O., Garcia, C.A., Waeber, P.O.A double edged sword: realities of artisanal and small scale mining for rural people in the Alaotra region of Madagascar. ** not specific to diamondsNatural Resources Forum, Vol 45 pp. 87-102. pdfAfrica, Madagascaralluvials

Abstract: A growing number of people are entering the artisanal and small?scale mining (ASM) sector worldwide. In Madagascar, millions of individuals depend on this informal activity. Through a case study in the Alaotra?Mangoro region of Madagascar, our research aimed to understand the "bottom?up" dynamics and ripple effects of the sector, by looking at the realities for rural communities where inhabitants are both directly and indirectly affected by ASM. We were interested in community members' and miners' perceptions of the socio?economic and environmental impacts of ASM, and in identifying the factors attracting people living in one of the country's agricultural hubs to this activity. Our results show a wide diversity of push and pull factors leading people to enter the sector. Although many positive impacts of ASM exist for miners and communities within the vicinity of mines, most miner participants considered themselves worse off since starting to mine, highlighting the high risk and low probability of return of ASM. ASM's potential for local and national development will remain squandered if its negative impacts continue to go unmanaged. Accounting for local contexts and the ripple effects of ASM will be crucial in achieving safety and security for miners, and to tap into the benefits it may offer communities while minimising environmental damage.
DS202107-1137
2021
Stracke, A.A process-oriented approach to mantle geochemistry. ** not specific to diamondsChemical Geology, Vol. 579, 120350 23p. PdfMantleperidotites

Abstract: The numerous chemical and isotopic studies of oceanic basalts have shaped our perception of mantle geochemistry over the last six decades. As partial melts of Earth’s mantle, basalts are indirect tracers of mantle composition. Because the scale of isotopic heterogeneity is smaller than the scale of melt production, melts from isotopically heterogeneous mantle ingredients mix into variable blends on their way to eruption. Basalts are therefore isotopically less variable than their mantle sources. Decrypting “the message from oceanic volcanism” thus necessitates developing strategies to see through this ubiquitous sampling bias, but also acknowledging the inherent limitations imposed by investigating mantle composition through basalts. Understanding how large the bias between melts and mantle actually is requires decoding process versus source-related causes for the isotopic variability of basalts. Ultimately, deciphering the effective range of isotopic variability in Earth’s mantle is crucial for connecting isotopic signals in basalts to different materials and thus, the geologic processes that govern silicate earth evolution. Invariably, however, basalts are weighted averages of melts from isotopically different mantle constituents. As such, their incompatible element and isotopic composition is inherently biased towards the incompatible element enriched source components. The incompatible element depleted components of Earth’s mantle must therefore range to more extreme compositions than the basalts. But although isotope data from peridotites and olivine-hosted melt inclusions have extended the bounds of mantle heterogeneity, the overall extent of incompatible element depletion and mass fraction of incompatible element depleted mantle is still elusive. Mantle depletion is driven by the rate of melt extraction, or mantle processing, and thus interconnects the geochemical and geodynamical evolution of Earth’s mantle. Better constraining mantle depletion is therefore at the root of understanding our planet’s principal mode of operation.
DS202107-1138
2021
Sturrock, C.P., Flowers, R.M., Macdonald, F.A.The late great unconformity of the central Canadian shield.Geochemistry, Geophysics, Geosytems, 49p. PdfCanada, Ontariogeochronology

Abstract: The Great Unconformity is a distinctive feature in the geologic record that separates more ancient rocks from younger (<540 Ma) sedimentary rocks. It commonly marks a substantial time gap in the rock record. When and why the Great Unconformity developed is much debated. We present new thermochronologic data that constrain when ancient rocks across the central Canadian Shield last cooled during exhumation to the surface before deposition of overlying sedimentary rocks that mark the Great Unconformity. These data and the geologic context indicate that the basement below the Great Unconformity erosion here was last exhumed after 650 Ma, in contrast to the pre-650 Ma timing inferred elsewhere in North America. This result is inconsistent with the notion that the Great Unconformity formed worldwide in a single erosion event.
DS202109-1491
2021
Sturrock, C.P., Flowers, R.M., Macdonald, F.A.The Late unconformity of the central Canadian Shield.Geochemistry, Geophysics, Geosystems, Vol. 22, e2020GC009567Canada, Saskatchewancraton

Abstract: The Great Unconformity is a distinctive feature in the geologic record that separates more ancient rocks from younger (<540 Ma) sedimentary rocks. It commonly marks a substantial time gap in the rock record. When and why the Great Unconformity developed is much debated. We present new thermochronologic data that constrain when ancient rocks across the central Canadian Shield last cooled during exhumation to the surface before deposition of overlying sedimentary rocks that mark the Great Unconformity. These data and the geologic context indicate that the basement below the Great Unconformity erosion here was last exhumed after 650 Ma, in contrast to the pre-650 Ma timing inferred elsewhere in North America. This result is inconsistent with the notion that the Great Unconformity formed worldwide in a single erosion event.
DS202111-1787
2021
Su, J-H., Zhao, X-F., Li, X-C., Su, Z-K., Liu, R., Qin, Z-J., Chen, W.T., Zhang, W., Chen, Y-W.Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, central China: constraints from in situ elemental and isotopic analyses of phosphate minerals.American Mineralogist, Vol. 106, pp. 1545-1558.ChinaREE

Abstract: Carbonatites and related alkaline rocks host most REE resources. Phosphate minerals, e.g., apatite and monazite, commonly occur as the main REE-host in carbonatites and have been used for tracing magmatic and mineralization processes. Many carbonatite intrusions undergo metamorphic and/or metasomatic modification after emplacement; however, the effects of such secondary events are controversial. In this study, the Miaoya and Shaxiongdong carbonatite-alkaline complexes, in the South Qinling Belt of Central China, are selected to unravel their magmatic and hydrothermal remobilization histories. Both the complexes are accompanied by Nb-REE mineralization and contain apatite and monazite-(Ce) as the major REE carriers. Apatite grains from the two complexes commonly show typical replacement textures related to fluid metasomatism, due to coupled dissolution-reprecipitation. The altered apatite domains, which contain abundant monazite-(Ce) inclusions or are locally surrounded by fine-grained monazite-(Ce), have average REE concentrations lower than primary apatite. These monazite-(Ce) inclusions and fine-grained monazite-(Ce) grains are proposed to have formed by the leaching REE from primary apatite grains during fluid metasomatism. A second type of monazite-(Ce), not spatially associated with apatite, shows porous textures and zoning under BSE imaging. Spot analyses of these monazite-(Ce) grains have variable U-Th-Pb ages of 210-410 Ma and show a peak age of 230 Ma, which is significantly younger than the emplacement age (440-430 Ma) but is roughly synchronous with a regionally metamorphic event related to the collision between the North China Craton and Yangtze Block along the Mianlue suture. However, in situ LA-MC-ICP-MS analyses of those grains show that they have initial Nd values same as those of magmatic apatite and whole rock. We suggest these monazite-(Ce) grains crystallized from the early Silurian carbonatites and have been partially or fully modified during a Triassic metamorphic event, partially resetting U-Pb ages over a wide range. Mass-balance calculations, based on mass proportions and the REE contents of monazite-(Ce) and apatite, demonstrate that the quantity of metasomatized early Silurian monazite-(Ce) is far higher than the proportion of monazite-(Ce) resulting from the metasomatic alteration of the apatite. Therefore, Triassic metamorphic events largely reset the U-Th-Pb isotopic system of the primary monazite-(Ce) and apatite but only had limited or local effects on REE remobilization in the carbonatite-alkaline complexes in the South Qinling Belt. Such scenarios may be widely applicable for other carbonatite and hydrothermal systems.
DS202105-0794
2021
Sudholz, Z.I., Yaxley, G.M., Jaques, A.L., Chen, J.Ni-in-garnet geothermometry in mantle rocks: a high pressure experimental recalibration between 1100 and 1325 C. ( diamond potential)Contributions to Mineralogy and Petrology, 176, 16p. PdfMantlegeothermobarometry

Abstract: The temperature-dependent exchange of Ni and Mg between garnet and olivine in mantle peridotite is an important geothermometer for determining temperature variations in the upper mantle and the diamond potential of kimberlites. Existing calibrations of the Ni-in-garnet geothermometer show considerable differences in estimated temperature above and below 1100 °C hindering its confident application. In this study, we present the results from new synthesis experiments conducted on a piston cylinder apparatus at 2.25-4.5 GPa and 1100-1325 °C. Our experimental approach was to equilibrate a Ni-free Cr-pyrope-rich garnet starting mixture made from sintered oxides with natural olivine capsules (Niolv ? 3000 ppm) to produce an experimental charge comprised entirely of peridotitic pyrope garnet with trace abundances of Ni (10-100 s of ppm). Experimental runs products were analysed by wave-length dispersive electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We use the partition coefficient for the distribution of Ni between our garnet experimental charge and the olivine capsule (lnDNigrt/olv;NigrtNiolv), the Ca mole fraction in garnet (XCagrt; Ca/(Ca?+?Fe?+?Mg)), and the Cr mole fraction in garnet (XCrgrt; Cr/(Cr?+?Al)) to develop a new formulation of the Ni-in-garnet geothermometer that performs more reliably on experimental and natural datasets than existing calibrations. Our updated Ni-in-garnet geothermometer is defined here as: T(?C)=?8254.568((XCagrt×3.023)+(XCrgrt×2.307)+(lnDNigrtolv?2.639))?273±55 where DNigrt/olv=NigrtNiolv, Ni is in ppm, XCagrt = Ca/(Ca?+?Fe?+?Mg) in garnet, and XCrgrt= Cr/(Cr?+?Al) in garnet. Our updated Ni-in-garnet geothermometer can be applied to garnet peridotite xenoliths or monomineralic garnet xenocrysts derived from disaggregation of a peridotite source. Our calibration can be used as a single grain geothermometer by assuming an average mantle olivine Ni concentration of 3000 ppm. To maximise the reliability of temperature estimates made from our Ni-in-garnet geothermometer, we provide users with a data quality protocol method which can be applied to all garnet EPMA and LA-ICP-MS analyses prior to Ni-in-garnet geothermometry. The temperature uncertainty of our updated calibration has been rigorously propagated by incorporating all analytical and experimental uncertainties. We have found that our Ni-in-garnet temperature estimates have a maximum associated uncertainty of ± 55 °C. The improved performance of our updated calibration is demonstrated through its application to previously published experimental datasets and on natural, well-characterised garnet peridotite xenoliths from a variety of published datasets, including the diamondiferous Diavik and Ekati kimberlite pipes from the Lac de Gras kimberlite field, Canada. Our new calibration better aligns temperature estimates using the Ni-in-garnet geothermometer with those estimated by the widely used (Nimis and Taylor, Contrib Mineral Petrol 139:541-554, 2000) enstatite-in-clinopyroxene geothermometer, and confirms an improvement in performance of the new calibration relative to existing versions of the Ni-in-garnet geothermometer.
DS202103-0414
2021
Sudholz, Z.J., Yaxley, G.M., Jaques, A.L., Brey, G.P.Experimental recalibration of the Cr-in-clinpyroxene geobarometer: improved precision and reliability above 4.5 Gpa.Contributions to Mineralogy and Petrology, Vol. 176, 10.1007/s0041 0-020-01768-z 21p. PdfMantlegeothermometry

Abstract: The pressure dependence of the exchange of Cr between clinopyroxene and garnet in peridotite is applicable as a geobarometer for mantle-derived Cr-diopside xenocrysts and xenoliths. The most widely used calibration (Nimis and Taylor Contrib Miner Petrol 139: 541-554, 2000; herein NT00) performs well at pressures below 4.5 GPa, but has been shown to consistently underestimate pressures above 4.5 GPa. We have experimentally re-examined this exchange reaction over an extended pressure, temperature, and compositional range using multi-anvil, belt, and piston cylinder apparatuses. Twenty-nine experiments were completed between 3-7 GPa, and 1100-1400 °C in a variety of compositionally complex lherzolitic systems. These experiments are used in conjunction with several published experimental datasets to present a modified calibration of the widely-used NT00 Cr-in-clinopyroxene (Cr-in-cpx) single crystal geobarometer. Our updated calibration calculates P (GPa) as a function of T (K), CaCr Tschermak activity in clinopyroxene (acpxCaCrTs), and Cr/(Cr?+?Al) (Cr#) in clinopyroxene. Rearranging experimental results into a 2n polynomial using multiple linear regression found the following expression for pressure: P(GPa)=11.03+(?T(K) ln(acpxCaCrTs)×0.001088)+(1.526×ln(Cr#cpxT(K))) where Cr#cpx=(CrCr+Al), acpxCaCrTs=Cr?0.81?Cr#cpx?(Na+K), with all mineral components calculated assuming six oxygen anions per formula unit in clinopyroxene. Temperature (K) may be calculated through a variety of geothermometers, however, we recommend the NT00 single crystal, enstatite-in-clinopyroxene (en-in-cpx) geothermometer. The pressure uncertainty of our updated calibration has been propagated by incorporating all analytical and experimental uncertainties. We have found that pressure estimates below 4 GPa, between 4-6 GPa and above 6 GPa have associated uncertainties of 0.31, 0.35, and 0.41 GPa, respectively. Pressures calculated using our calibration of the Cr-in-cpx geobarometer are in good agreement between 2-7 GPa, and 900-1400 °C with those estimated from widely-used two-phase geobarometers based on the solubility of alumina in orthopyroxene coexisting with garnet. Application of our updated calibration to suites of well-equilibrated garnet lherzolite and garnet pyroxenite xenoliths and xenocrysts from the Diavik-Ekati kimberlite and the Argyle lamproite pipes confirm the accuracy and precision of our modified geobarometer, and show that PT estimates using our revised geobarometer result in systematically steeper paleogeotherms and higher estimates of the lithosphere?asthenosphere boundary compared with the original NT00 calibration.
DS202106-0972
2021
Sun, J., Zhu, X-K., Belshaw, N.S., Chen, W., Doroshkevich, A.G., Luo, W.J., Song, W.L., Chen, B.B., Cheng, Z.G., Li, Z.H., Wang, Y., Kynicky, J., Henderson, G.M.Ca isotope systematics of carbonatites: insights into carbonatite source and evolution.Geochemical Perspectives Letters, Vol. 17, pp. 11-15. pdfMantlecarbonatites

Abstract: Carbonatite, an unusual carbonate-rich igneous rock, is known to be sourced from the mantle which provides insights into mantle-to-crust carbon transfer. To constrain further the Ca isotopic composition of carbonatites, investigate the behaviour of Ca isotopes during their evolution, and constrain whether recycled carbonates are involved in their source regions, we report ?44/42Ca for 47 worldwide carbonatite and associated silicate rocks using a refined analytical protocol. Our results show that primary carbonatite and associated silicate rocks are rather homogeneous in Ca isotope compositions that are comparable to ?44/42Ca values of basalts, while non-primary carbonatites show detectable ?44/42Ca variations that are correlated to ?13C values. Our finding suggests that Ca isotopes fractionate during late stages of carbonatite evolution, making it a useful tool in the study of carbonatite evolution. The finding also implies that carbonatite is sourced from a mantle source without requiring the involvement of recycled carbonates.
DS202111-1788
2021
Sun, K., Zhao, Z., Zhang, L., Qiu, L., Liu, X., He, S., Ren, J., Ye, L., Cui, Y.Geochronology, petrography and Sr-Nd-Hf isotopes of Mbalizi carbonatite, southwestern Tanzania.Journal of African Sciences, Vol. 184, 104308, 12p. PdfAfrica, Tanzaniadeposit - Mbalizi

Abstract: The Mbalizi carbonatite is located in the middle of the Paleoproterozoic Ubendian Mobile Belt and the western branch of East Africa Rift, southwestern Tanzania. Calcite, dolomite, phlogopite, pyrochlore and apatite are found in the sample. Mineral chemistry studies have shown that the carbonatite phlogopite is linked to mantle-derived magmatism. The apatite is fluorapatite, means they are of magmatic origin. The analyses on two crystals of pyrochlore show high concentrations of Nb2O5, and therefore the Nb-oxide is classified as pyrochlore subspecies. Three types of zircon have been obtained from the Mbalizi carbonatite, including xenocrysts zircon, igneous zircon and metamorphic zircon. Zircon in-situ LA-ICP-MS U-Pb dating in this contribution indicates that the Mbalizi carbonatite was crystallized at ca. 116.0 ± 1.8 Ma. The ?Hf(t) values of igneous zircon ranging from ?13.9 to +5.7, indicates that the carbonatite parental magma was originated from the sub-continental lithospheric mantle, and evolves toward HIMU and EM. The whole-rock Sr-Nd isotopic data suggest more contribution of the HIMU and EM? material. We propose that the complex evolutionary history of the Ubendian Mobile Belt has stored the subduction oceanic crust which has the EM? and HIMU components, forming the compositional heterogeneity mantle beneath the Ubendian Mobile Belt. At 116.0 ± 1.8 Ma, with the extension stress field, deep faults cause the pressure reduction, resulting in reactive of the upwelling of the HIMU and EM? components. This provides the metamorphic conditions to induce the isotopic resetting and may result in large scatter of initial 176Hf/177Hf ratios of carbonatite melts.
DS202107-1139
2021
Sun, W-D., Zhang, L., Li, R., Xie, G., Liu, L., Li, C-y., Zhang, L. Origin of kimberlite from the base of the upper mantle.Research Square, doi.org/10.21203/rs-532988/v1 19p. PdfMantlemagmatism
DS202107-1140
2021
Sun, Y., Teng, F-Z., Pang, K-N., Ying, J-F, Kuehner, S.Multistage mantle metasomatism deciphered by Mg-Sr-Nd-Pb isotopes in the Leucite Hills lamproite.Contributions to Mineralogy and Petrology, Vol. 176, 45, 10.1007/s00410-021-01801-9 pdfUnited States, Wyomingdeposit - Leucite Hills

Abstract: Cratonic lamproites bear extreme Sr?Nd?Pb isotopic compositions widely known as enriched mantle I (EMI), yet the origin of the EMI reservoir remains controversial. Here, we explore this issue by examining Mg?Sr?Nd?Pb isotopic compositions of lamproites from Leucite Hills, Wyoming, USA. The ?26Mg values vary from the range of the normal mantle to lower values (? 0.43 to ? 0.18 ‰), correlating with indices of the degree of carbonate metasomatism, an observation that can be best explained through mantle metasomatism by subducted carbonate-bearing sediments. With increasing extent of carbonate metasomatism, these samples display less extreme EMI Sr?Nd?Pb isotopic signatures, arguing for at least two metasomatic events that occurred in their mantle sources. The early metasomatic event associated with subducted continent-derived siliciclastic sediments led to the formation of the EMI Sr?Nd?Pb isotopic signatures while the recent carbonate metasomatism produced the light Mg isotopic signature but diluted the EMI Sr?Nd?Pb isotopic signatures. Our study indicates that a combination of Mg and Sr?Nd?Pb isotopes could be an effective tool in deciphering multiple-stage metasomatic events in mantle sources and places new constraints on the generation of enriched mantle reservoirs.
DS202106-0973
2021
Tagawa, S., Sakamoto, N., Hirose, K., Hernlund, J., Ohishi, Y., Yurimoto, H.Experimental evidence for more hydrogen in Earth's core than in the oceans.Nature Communications, doi.org/10.1038/s41467-021-22035-0 Vol. 12 8p. PdfMantlehydrogen

Abstract: Hydrogen is one of the possible alloying elements in the Earth’s core, but its siderophile (iron-loving) nature is debated. Here we experimentally examined the partitioning of hydrogen between molten iron and silicate melt at 30-60 gigapascals and 3100-4600?kelvin. We find that hydrogen has a metal/silicate partition coefficient DH???29 and is therefore strongly siderophile at conditions of core formation. Unless water was delivered only in the final stage of accretion, core formation scenarios suggest that 0.3-0.6?wt% H was incorporated into the core, leaving a relatively small residual H2O concentration in silicates. This amount of H explains 30-60% of the density deficit and sound velocity excess of the outer core relative to pure iron. Our results also suggest that hydrogen may be an important constituent in the metallic cores of any terrestrial planet or moon having a mass in excess of ~10% of the Earth.
DS202103-0415
2021
Taguchi, T., Kouketsu, Y., Igami, Y., Kobayashi, T., Miyake, A.Hidden intact coesite in deeply subducted rocks.Earth and Planetary Science Letters, Vol. 558, 115763, 6p. PdfEurope, ItalyUHP

Abstract: The stabilization of coesite is a diagnostic indicator of ultrahigh-pressure metamorphism and in many cases it implies that a rock has been subducted to a minimum depth of 80 km. Coesite typically occurs as rare relicts in rigid host minerals, but most commonly transforms into ?-quartz pseudomorphs during exhumation. The abundance of coesite-bearing rocks in orogens worldwide is a contentious issue in the petrological community, despite evidence from numerical modeling that suggests that coesite formation should be a common geological process during ultrahigh-pressure metamorphism. This knowledge gap must be addressed to improve the understanding of the geological aspects of subduction-zone geodynamics. Here we report that minuscule coesites (<20 ?m) occur as abundant inclusions in garnet-rich layers from the Italian Western Alps. The discovery of such intact inclusions may fill the gaps in the predicted and observed abundances of coesite worldwide. Through integrated approaches with resolutions down to the nano-scale, we show that these garnet-hosted inclusions are composed entirely of coesite. Our results suggest that common coesite-derived quartz pseudomorphs are less typical structures in ultrahigh-pressure metamorphic rocks and the minuscule coesite in many rocks may be overlooked because of its size. These findings open up new research directions for constraining the extent of deeply subducted rocks and their rheology.
DS202108-1310
2021
Tang, L., Wagner, T., Fusswinkel, T., Zhang, S-T., Xu, B., Jia, L-H.Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He-Ar isotopes from the Huanshuiian deposit, Qinling, China.Mineralium Deposita, 18p. PdfChinadeposit - Huanshuian

Abstract: The Huangshui'an deposit located in East Qinling (China) is an unusual case of a Si-rich carbonatite hosting economic Mo and minor Pb and REE mineralization. The role of mantle-sourced carbonatite melts and fluids in the formation of the Mo mineralization remains poorly understood. Our integrated study based on field geology, petrography, microthermometry, and LA-ICP-MS analysis of single fluid inclusions, and noble gas isotopes of pyrite permits to reconstruct the source characteristics, the magmatic-hydrothermal evolution of the carbonatitic fluids, and their controls on Mo mineralization. Fluid inclusions hosted in calcite in the carbonatite dikes have the highest concentrations of Mo (9.9-62 ppm), Ce (820-9700 ppm), Pb (1800-19500 ppm), and Zn (570-5800 ppm) and represent the least modified hydrothermal fluid derived from the carbonatite melt. Fluid inclusions hosted in calcite (Cal) and quartz (Qz2 and Qz3) of the stage I carbonatite dikes have different metal concentrations, suggesting that they formed from two distinct end member fluids. The FIA in calcite represent fluid A evolved from carbonatite melt with relatively high-ore metal concentrations, and those in quartz characterize fluid B having a crustal signature due to metasomatic reactions with the wall rocks. The FIA in quartz (Qz1) within the altered wall rock have overlapping elemental concentrations with those of massive quartz (Qz2) and vuggy quartz (Qz3) in carbonatite. This suggests that the volumetrically significant quartz in the Huangshui'an carbonatite has been formed by the introduction of Si by fluid B. The positive correlations between Rb, B, Al, Cl, and Sr in stage II fluid inclusions in late fluorite + quartz + calcite veins indicate that this late mineralization formed from the mixing of primary hydrothermal fluid B with meteoric water. The He-Ar isotope data, in combination with available C-O-Sr-Nd-Pb isotope data, constrain the carbonatite source as an enriched mantle source modified by contributions from crustal material which was probably the fertile lower crust in the region. This distinct source facilitated the enrichment in Mo, REE, and Pb in the primary carbonatite magma. The carbonatite magmatism and Mo mineralization at 209.5-207 Ma occurred in the regional-scale extensional setting at the postcollision stage of the Qinling Orogenic Belt.
DS202105-0795
2021
Tang, Li., Wagner, T.,Fusswinkel, T., Zhang, S-T., Xi, B., Jia, L-H., Hu, X-K. Magmatic-hydrothermal evolution of an unusual Mo-rich carbonatite: a case study using LA-ICP-MS fluid inclusion microanalysis and He-Ar isotopes from the Huangshuian deposit, Qinling, China.Mineralium Deposita, 10.1007/s00126 -021-01055-2 18p. PdfChinacarbonatites

Abstract: The Huangshui'an deposit located in East Qinling (China) is an unusual case of a Si-rich carbonatite hosting economic Mo and minor Pb and REE mineralization. The role of mantle-sourced carbonatite melts and fluids in the formation of the Mo mineralization remains poorly understood. Our integrated study based on field geology, petrography, microthermometry, and LA-ICP-MS analysis of single fluid inclusions, and noble gas isotopes of pyrite permits to reconstruct the source characteristics, the magmatic-hydrothermal evolution of the carbonatitic fluids, and their controls on Mo mineralization. Fluid inclusions hosted in calcite in the carbonatite dikes have the highest concentrations of Mo (9.9-62 ppm), Ce (820-9700 ppm), Pb (1800-19500 ppm), and Zn (570-5800 ppm) and represent the least modified hydrothermal fluid derived from the carbonatite melt. Fluid inclusions hosted in calcite (Cal) and quartz (Qz2 and Qz3) of the stage I carbonatite dikes have different metal concentrations, suggesting that they formed from two distinct end member fluids. The FIA in calcite represent fluid A evolved from carbonatite melt with relatively high-ore metal concentrations, and those in quartz characterize fluid B having a crustal signature due to metasomatic reactions with the wall rocks. The FIA in quartz (Qz1) within the altered wall rock have overlapping elemental concentrations with those of massive quartz (Qz2) and vuggy quartz (Qz3) in carbonatite. This suggests that the volumetrically significant quartz in the Huangshui'an carbonatite has been formed by the introduction of Si by fluid B. The positive correlations between Rb, B, Al, Cl, and Sr in stage II fluid inclusions in late fluorite + quartz + calcite veins indicate that this late mineralization formed from the mixing of primary hydrothermal fluid B with meteoric water. The He-Ar isotope data, in combination with available C-O-Sr-Nd-Pb isotope data, constrain the carbonatite source as an enriched mantle source modified by contributions from crustal material which was probably the fertile lower crust in the region. This distinct source facilitated the enrichment in Mo, REE, and Pb in the primary carbonatite magma. The carbonatite magmatism and Mo mineralization at 209.5-207 Ma occurred in the regional-scale extensional setting at the postcollision stage of the Qinling Orogenic Belt.
DS202102-0226
2021
Tang, M., Ji, W-Q., Chu, X., Wu, A., Chen, C.Reconstructing crustal thickness evolution from europium anomalies in detrital zircons.Geology, Vol. 49, pp. 76-80. pdfAsia, Tibetzircons

Abstract: A new data compilation shows that in intermediate to felsic rocks, zircon Eu/Eu* [chondrite normalized Eu/ graphic] correlates with whole rock La/Yb, which has been be used to infer crustal thickness. The resultant positive correlation between zircon Eu/Eu* and crustal thickness can be explained by two processes favored during high-pressure differentiation: (1) supression of plagioclase and (2) endogenic oxidation of Eu2+ due to garnet fractionation. Here we calibrate a crustal thickness proxy based on Eu anomalies in zircons. The Eu/Eu*-in-zircon proxy makes it possible to reconstruct crustal thickness evolution in magmatic arcs and orogens using detrital zircons. To evaluate this new proxy, we analyzed detrital zircons separated from modern river sands in the Gangdese belt, southern Tibet. Our results reveal two episodes of crustal thickening (to 60-70 km) since the Cretaceous. The first thickening event occurred at 90-70 Ma, and the second at 50-30 Ma following Eurasia-India collision. These findings are temporally consistent with contractional deformation of sedimentary strata in southern Tibet.
DS202107-1141
2021
Tappe, S., Massuyeau, M. , Smart, K.A., Woodland, A.B., Gussone, N., Milne, S., Stracke, A.Sheared peridotite and megacryst formation beneath the Kaapvaal Craton: a snapshot of tectonomagmetic processes across the lithosphere-asthenosphere transition.Journal of Petrology, 107p. In press availableAfrica, South Africacraton - Kaapvaal
DS202111-1789
2021
Tappe, S., Massuyeau, M., Smart, K.A., Woodland, A.B., Gussone, N., Milne, S., Stracke, A.Sheared peridotite and megacryst formation beneath the Kaapvaal craton: a snapshot of tectonomagmatic processes across the lithosphere-asthenosphere transition.Journal of Petrology, Vol. 62, 8, pp. 1-39. pdfAfrica, South Africadeposit - Premier, Cullinan

Abstract: The cratonic lithosphere-asthenosphere boundary is commonly invoked as the site of sheared peridotite and megacryst formation, a well-recognized petrological assemblage whose genetic relationships—if any—remain poorly understood. We have undertaken a comprehensive petrology and Sr-Nd-Hf-Ca isotope study of sheared peridotite xenoliths and clinopyroxene megacrysts from the c. 1150 Ma Premier kimberlite pipe on the central Kaapvaal craton in South Africa. New textural and mineral trace element evidence suggests that strong tectonic and magmatic overprinting affected the lower cratonic mantle over a vertical distance of ?50 km from the lithosphere-asthenosphere boundary located at ?200-225 km depth. Although modification of the central Kaapvaal cratonic mantle is commonly linked to the c. 2056 Ma Bushveld large igneous event, our thermobarometry, mantle redox, and Sr-Nd-Hf-Ca isotope data support a model in which volatile-rich low-volume melts and associated high-density fluids refertilized the lithosphere base shortly before or during asthenosphere-derived kimberlite and carbonatite magmatism at around 1150 Ma. This episode of lithospheric mantle enrichment was facilitated by exceptionally strong shear movements, as are recorded in the plastically deformed peridotites. We argue that stress-driven segregation of percolating carbonated melts contributed to megacryst formation along, or in close proximity to, shear zones within the cratonic mantle lithosphere. Integration of our results from the Kaapvaal craton and modern petrological concepts allows for the identification of a lithosphere-asthenosphere transition zone between ?150 and 225 km depth. This horizon is defined by intersections of the ?40-42 mW m-2 Premier paleogeotherm with (1) CO2-H2O-present solidus curves for peridotite (upper bound), and (2) typical mantle adiabats with potential temperatures between 1315 and 1420 °C (lower bound). At Premier, the most strongly deformed sheared peridotites occur mainly between ?160 and 185 km depth, firmly within the lithosphere-asthenosphere transition zone. Contrary to many previous models, we suggest that sheared peridotite formation occurs in localized deformation zones spaced out across the entire width of the lithosphere-asthenosphere transition zone, rather than being restricted to a single thin layer at the craton base where mantle flow causes viscous drag. Hence, plate-tectonic stresses acting on the lower cratonic lithosphere may be accommodated by extensive networks of shear zones, which provide transient pathways and sinks for percolating volatile-rich melts, linking the formation of megacrysts and sheared peridotites.
DS202108-1311
2021
Tappe, S., Shaikh, A.M., Wilson, A H., Stracke, A.Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate.Geological Society of London Special Publications, doi:https://dori.org/10.1144/SP513-2021-84 30p. Pdf proofAfrica, South Africalamproite

Abstract: Orangeites are a significant source of diamonds, yet ambiguity surrounds their status among groups of mantle-derived potassic rocks. This study reports mineralogical and geochemical data for a ca. 140 Ma orangeite dyke swarm that intersects the Bushveld Complex on the Kaapvaal craton in South Africa. The dykes comprise distinctive petrographic varieties that are linked principally by olivine fractionation, with the most evolved members containing minor amounts of primary carbonate, sanidine and andradite garnet in the groundmass. Although abundant groundmass phlogopite and clinopyroxene have compositions that are similar to those of cratonic lamproites, these phases show notable Ti-depletion, which we consider a hallmark feature of type orangeites from the Kaapvaal craton. Ti-depletion is also characteristic for the bulk rock compositions and is associated with strongly depleted Th-U-Nb-Ta contents at high Cs-Rb-Ba-K concentrations. The resultant high LILE/HFSE ratios of orangeites suggest that mantle source enrichment occurred by metasomatic processes in the proximity of ancient subduction zones. The Bushveld-intersecting orangeite dykes have strongly enriched Sr-Nd-Hf isotopic compositions (initial 87Sr/86Sr = 0.70701-0.70741; ?Nd = ?10.6 to ?5.8; ?Hf = ?14.4 to ?2.5), similar to those of other orangeites from across South Africa. Combined with the strong Ti-Nb-Ta depletion, this ubiquitous isotopic feature points to the involvement of ancient metasomatized mantle lithosphere in the origin of Kaapvaal craton orangeites, where K-rich metasomes imparted a ‘fossil’ subduction geochemical signature. Previous geochronology studies identified ancient K-enrichment events within the Kaapvaal cratonic mantle lithosphere, possibly associated with collisional tectonics during the 1.2-1.1 Ga Namaqua-Natal orogeny of the Rodinia supercontinent cycle. It therefore seems permissible that the cratonic mantle root was preconditioned for ultrapotassic magma production by tectonomagmatic events that occurred along convergent plate margins during the Proterozoic. However, reactivation of the K-rich metasomes had to await establishment of an extensional tectonic regime, such as that during the Mesozoic breakup of Gondwana, which was accompanied by widespread (1000 × 750 km) small-volume orangeite volcanism between 200 and 110 Ma. Although similarities exist between orangeites and lamproites, these and other potassic rocks are sufficiently distinct in their compositions such that different magma formation processes must be considered. In addition to new investigations of the geodynamic triggers of K-rich ultramafic magmatism, future research should more stringently evaluate the relative roles of redox effects and volatile components such as H2O-CO2-F in the petrogeneses of these potentially diamondiferous alkaline rocks.
DS202107-1142
2021
Tappe, S., Shaikh, A.M., Wilson, A.H., Stracke, A.Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate.Geological Society London Special Publication, 10.6084/m9.figshare.c.5440652.v1Africa, South Africalamproite
DS202110-1638
2021
Tappe, S., Smart, K., Massuyeau, M., Gussone, N.Sheared peridotite and megacryst formation beneath the Kaapvaal craton: a snapshot of tectonomagnetic processes across the lithosphere-asthenosphere transition.Journal of Petrology, Aug. 40p. Pdf research gateAfrica, South Africamagmatism

Abstract: The cratonic lithosphere-asthenosphere boundary is commonly invoked as the site of sheared peridotite and megacryst formation, a well-recognized petrological assemblage whose genetic relationships—if any—remain poorly understood. We have undertaken a comprehensive petrology and Sr-Nd-Hf-Ca isotope study of sheared peridotite xenoliths and clinopyroxene megacrysts from the c. 1150 Ma Premier kimberlite pipe on the central Kaapvaal craton in South Africa. New textural and mineral trace element evidence suggests that strong tectonic and magmatic overprinting affected the lower cratonic mantle over a vertical distance of ?50 km from the lithosphere-asthenosphere boundary located at ?200-225 km depth. Although modification of the central Kaapvaal cratonic mantle is commonly linked to the c. 2056 Ma Bushveld large igneous event, our thermobarometry, mantle redox, and Sr-Nd-Hf-Ca isotope data support a model in which volatile-rich low-volume melts and associated high-density fluids refertilized the lithosphere base shortly before or during asthenosphere-derived kimberlite and carbonatite magmatism at around 1150 Ma. This episode of lithospheric mantle enrichment was facilitated by exceptionally strong shear movements, as are recorded in the plastically deformed peridotites. We argue that stress-driven segregation of percolating carbonated melts contributed to megacryst formation along, or in close proximity to, shear zones within the cratonic mantle lithosphere. Integration of our results from the Kaapvaal craton and modern petrological concepts allows for the identification of a lithosphere-asthenosphere transition zone between ?150 and 225 km depth. This horizon is defined by intersections of the ?40-42 mW m-2 Premier paleogeotherm with (1) CO2-H2O-present solidus curves for peridotite (upper bound), and (2) typical mantle adiabats with potential temperatures between 1315 and 1420 °C (lower bound). At Premier, the most strongly deformed sheared peridotites occur mainly between ?160 and 185 km depth, firmly within the lithosphere-asthenosphere transition zone. Contrary to many previous models, we suggest that sheared peridotite formation occurs in localized deformation zones spaced out across the entire width of the lithosphere-asthenosphere transition zone, rather than being restricted to a single thin layer at the craton base where mantle flow causes viscous drag. Hence, plate-tectonic stresses acting on the lower cratonic lithosphere may be accommodated by extensive networks of shear zones, which provide transient pathways and sinks for percolating volatile-rich melts, linking the formation of megacrysts and sheared peridotites.
DS202106-0974
2021
Tchoukeu, C.D.N., Baseka, C.A., Djomani, Y.P., Rousse, S., Etame,J., Llubes, M., Seoane,L., Mbang, C.S., Yomba, A.E.Crustal thickness, depth to the bottom of magnetic sources and thermal structure of the crust from Cameroon to Central African Republic: preliminary results for a better understanding of the origin of the Bangui Magnetic Anomaly.Journal of African Earth Sciences, Vol. 179, 104206, 21p. pdfAfrica, Cameroon, Central African Republicgeophysics

Abstract: The Bangui Magnetic Anomaly (BMA) is one of the largest magnetic anomalies in the world whose origin is still not known. This research investigated the crustal thickness, Curie depths and thermal structures in the Central African sub-regions - Cameroon, Central African Republic and adjacent countries - which are largely characterized by the Bangui Magnetic Anomaly. To achieve a better understanding and clearer idea of the location of the possible sources of the BMA, analyses of geothermal structures were conducted. Two potential methods were used: gravity to evaluate the crustal thickness and magnetics for geothermal analysis. Spectral analysis of gravity data shows that crustal thickness range between 14 and 55 km. The highest depths were found in Central African Republic. The lower values of crustal thickness were obtained in South-Chad basin with a minimum of roughly 14 km. Geothermal analysis is carried out using the Curie point depth, thermal gradient and heat-flow evaluations. The results show that the BMA is related to a thick crust of roughly 40 km. Depth to the bottom of possible sources does not exceed the lower crust. The mean Curie point depth estimated is 38 km with an error of ±2 km. Geothermal results also show the difference in the thermal behaviour between the crust in the Pan African and Precambrian domain. The mobile zone which constitutes the Pan African domain is associated with a thin crust of high heat-flow values of 65 mW/m2. However, the Precambrian domain beneath the BMA is associated with a thick crust with lower heat-flow values (roughly 45 mW/m2). The difference between crustal thickness and Curie point depths shows that all the sources of the BMA are crustal. The present results are in favour of a geological origin for the Bangui Magnetic anomaly.
DS202103-0416
2021
Thomson, A.R., Kohn, S.C., Prabhu, A., Walter, M.J.Evaluating the formation pressure of diamond-hosted majoritic garnets; a machine learning majorite barometer.Journal of Geophysical Research, Solid Earth, in press available, 34p.Globaldiamond inclusions

Abstract: Natural diamonds, as well as being a cherished commodity, are valuable for scientists studying the Earth's interior because they only grow at depths greater than 140 km. When diamonds grow, they may trap tiny fragments of surrounding materials as sub?millimetre defects. Study of these inclusions can provide insights into the materials and processes occurring deep inside our planet. Sub?lithospheric diamonds are a relatively rare subset of natural diamonds, believed to have grown deeper than 250 km, and are thought to be the deepest Earth materials that have been transported to the surface. Ideally, we would be able to estimate their formation depths accurately. Inclusions of majoritic garnet provide a unique opportunity for this, as their chemistry is known to change systematically with formation depth. However, this behaviour is highly complex, and previous attempts to parameterise the depth dependence of inclusion chemistries have limitations. Here we have used data science to train a "Machine Learning" algorithm that improves the accuracy of estimating the formation pressures of majoritic garnet inclusion. The approach confirms that many natural diamonds containing inclusions of majoritic garnet must have originally formed at depths of 400 - 660 km.
DS202105-0796
2021
Thomson, A.R., Kohn, S.C., Prabhu, A., Walter, M.J.Evaluating the formation pressure of diamond-hosted majoritic garnets: a machine leaning majorite barometer.Journal of Geophysical Research Physical Review B., http://doi.org/10 /1029/2020JB020 604 21p. PdfMantlediamond inclusions

Abstract: Natural diamonds, as well as being a cherished commodity, are valuable for scientists studying the Earth's interior because they only grow at depths greater than 140 km. When diamonds grow, they may trap tiny fragments of surrounding materials as sub?millimeter defects. Study of these inclusions can provide insights into the materials and processes occurring deep inside our planet. Sub?lithospheric diamonds are a relatively rare subset of natural diamonds, believed to have grown deeper than 250 km, and are thought to be the deepest Earth materials that have been transported to the surface. Ideally, we would be able to estimate their formation depths accurately. Inclusions of majoritic garnet provide a unique opportunity for this, as their chemistry is known to change systematically with formation depth. However, this behavior is highly complex, and previous attempts to parameterize the depth dependence of inclusion chemistries have limitations. Here we have used data science to train a "machine learning" algorithm that improves the accuracy of estimating the formation pressures of majoritic garnet inclusion. The approach confirms that many natural diamonds containing inclusions of majoritic garnet must have originally formed at depths of 400-660 km.
DS202106-0975
2021
Thrane, K.The oldest part of the Rae craton identified in western Greenland.Precambrian Research, Vol. 357, 106139, 14p. PdfEurope, Greenlandcraton

Abstract: New U-Pb zircon data from a range of Archean rocks from the Paleoproterozoic Rinkian Belt in the North-West and central West Greenland provide new constraints on the crystallisation and formation of the Archean basement to this Paleoproterozoic orogen. The results show that the protoliths of the oldest orthogneisses were emplaced in the central part of the Rinkian Belt at c. 3150-3100 Ma. This was followed in the southern part of the belt by the crystallisation of igneous rocks at c. 3000-2900 Ma, including rhyolites that are well preserved. This event is not recorded in the northern part of the belt and may represent southward growth away from a cratonic core at this time. The orthogneisses across the entire belt were subsequently affected by a metamorphic event at c. 2730-2660 Ma, which included intrusions of granites and northward cratonic growth. A few samples also yield evidence of a younger Paleoproterozoic overprint associated with the formation of the 1.90-1.80 Ga Rinkian Belt. The Archean basement rocks of the Rinkian Belt have previously been correlated with similar rocks exposed in northeast Canada and, consequently, they have been referred to as the Greenland part of the Rae craton. The new data support this correlation in general but reveal that Greenland contains the oldest rocks of the Rae craton discovered so far. The new data also show that the Rinkian Belt has a significantly different Archean history than the basement underlying the Nagssugtoqidian orogen to the south. This supports former models that envision two separate Archean cratons colliding during the Paleoproterozoic and that a suture of this age is situated in the central Disko Bugt area.
DS202104-0611
2021
Titkov, S.V., Yakovleva, V.V., Breev, I.D., Anisimov, A.N., Baranov, P.G., Dorofeeva, A.I., Bortnikov, N.S.Distribution of nitrogen-vacancy NV centers in cubic diamond crystals from Anabar placers as revealed by ODMR and PL tomography.Doklady Earth Sciences, Vol. 496, 1, pp. 45-47. pdfRussiadeposit - Anabar

Abstract: Nitrogen-vacancy NV- centers, which are of considerable interest for quantum electronics, are artificially produced in the diamond structure by irradiation and subsequent annealing. In this work, these centers were revealed in natural diamonds of cubic habit (type IaA + Ib according to physical classification) from an industrial placer deposit of the Anabar River (NE Siberian platform) using the method of optically detected magnetic resonance (ODMR). Localization of the NV- centers in the dislocations slip planes {111}, separated by distances of about 5 ?m, was established by means of scanning the ODMR and PL signals with a submicron resolution. In various crystals, one or two intersecting systems of such slip planes have been revealed. The largest amounts of these defects were found in the peripheral zones of crystals containing increased amounts of single isomorphic nitrogen atoms in the structure. The data obtained indicate the formation of the NV- centers in natural diamonds under post-crystallization plastic deformation, i.e., by a mechanism that differs from the widely used method of their artificial production.
DS202110-1639
2020
Tomchinsky, B., da Silva Siqueira, F.F.Where the diamonds occur: indicator plants of diamond gems in Brazil. *** in PORTEthnscientia ***IN PORT, Vol. 5, 9p. Pdf South America, Brazilgeobotany
DS202110-1640
2021
Tomioka, N.The fourth polymorph Mg2SiO4 poirierite in shocked meteorites.Elements, Vol. 17, p. 195. Mantleolivine

Abstract: A dense magnesium iron silicate polymorph with a structure intermediate between olivine, ringwoodite, and wadsleyite was theoretically predicted about four decades ago. As this group of minerals constitute the major component of shocked meteorites, constraining their transitional forms and behaviour is of potential importance for understanding impact events on their parent bodies. Here we use high-resolution transmission electron microscopy techniques and single-crystal X-ray diffraction analyses to identify naturally occurring examples of this mineral - recently named poirierite - in shocked chondritic meteorites. We observe nanoscale lamellar poirierite topotactically intergrown within wadsleyite, and additionally within ringwoodite as recently reported. Our results confirm the intermediate structure of poirierite and suggest it might be a relay point in the shear transformations between its polymorphs. We propose that poirierite formed during rapid decompression at relatively low temperature in retrograde shock metamorphism of the meteorites.
DS202103-0417
2021
Tomlinson, E.L., Kamber, B.S.Depth-dependent peridotite-melt interaction and the origin of variable silica in the cratonic mantle.Nature Communications, doi:101038/s41467- 021-21343-9 33p. Pdf Mantlecraton

Abstract: Peridotites from the thick roots of Archaean cratons are known for their compositional diversity, whose origin remains debated. We report thermodynamic modelling results for reactions between peridotite and ascending mantle melts. Reaction between highly magnesian melt (komatiite) and peridotite leads to orthopyroxene crystallisation, yielding silica-rich harzburgite. By contrast, shallow basalt-peridotite reaction leads to olivine enrichment, producing magnesium-rich dunites that cannot be generated by simple melting. Komatiite is spatially and temporally associated with basalt within Archaean terranes indicating that modest-degree melting co-existed with advanced melting. We envisage a relatively cool mantle that experienced episodic hot upwellings, the two settings could have coexisted if roots of nascent cratons became locally strongly extended. Alternatively, deep refractory silica-rich residues could have been detached from shallower dunitic lithosphere prior to cratonic amalgamation. Regardless, the distinct Archaean melting-reaction environments collectively produced skewed and multi-modal olivine distributions in the cratonic lithosphere and bimodal mafic-ultramafic volcanism at surface.
DS202107-1143
2021
Touret, J.Fluid regime during the formation of continental crust.Academia Letters, 655, 7p. Pdf doi.org/10.20935/AL655Mantlesubduction
DS202110-1641
2021
Touret, J.Fluid regime during the formation of continental crust ( Not specific to diamonds - but subduction/hydrous).Academia Letters, 655, 7p. PdfMantleOceanic crust
DS202111-1790
2021
Trindade, R.I.F., D'Agrella-Filho, M.S., Antonio, P.Y.J., Teixeira, W.Chapter 6: Paleoproterozoic evolution of the Sao Francisco Craton and global implications.In: Ancient supercontinents and the paleogeography of the Earth. Personen et al editors, 25p. PdfSouth America, Brazilpaleomagnetism
DS202103-0418
2021
Tripathy-Lang, A.How geodynamo models churn the outer core.Eos, 102, doi.org/10.1029 /2021EO154727MantleGeodynamics

Abstract: New simulations of Earth’s outer core have reproduced magnetic fields that—for the first time-match paleomagnetic data collected from rocks.
DS202111-1791
2021
Tripathy-Lang, A.Diamonds are a paleomagnetist's best friend. EOS, Vol. 102, Oct 19, doi/1029/2021EO210561MantleMagnetics
DS202112-1952
2021
Tschauner, O., Huang, S., Yang, S., Humayun, M., Liu, W., Gilbert Corder, S.N., Bechtel, H.A., Tischler, J., Rossman, G.R., Nature discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle. Science, Vol. 374, 6569, pp. 891-894. pdfMantlemineralogy

Abstract: Calcium silicate perovskite, CaSiO3, is arguably the most geochemically important phase in the lower mantle, because it concentrates elements that are incompatible in the upper mantle, including the heat-generating elements thorium and uranium, which have half-lives longer than the geologic history of Earth. We report CaSiO3-perovskite as an approved mineral (IMA2020-012a) with the name davemaoite. The natural specimen of davemaoite proves the existence of compositional heterogeneity within the lower mantle. Our observations indicate that davemaoite also hosts potassium in addition to uranium and thorium in its structure. Hence, the regional and global abundances of davemaoite influence the heat budget of the deep mantle, where the mineral is thermodynamically stable.
DS202105-0797
2021
Turner, B. Lab made hexagonal diamonds are stronger than the real thing. livescience.com, https://www.livescience. com/stronger-hexagonal -diamonds-created.htmlGlobalsynthetics
DS202101-0035
2020
Turner, S., Turner, M., Bourdon, B., Cooper, K., Porcelli, D.Extremely young melt infiltration of the sub-continental lithospheric mantle.Physics of the Earth and Planetary Interiors, doi.org/10.1016/ j.pepi.2-19.106325 54p. PdfMantlemelting

Abstract: It has long been inferred that mantle metasomatism and the incompatible element enrichment of the continents both require movement of melts formed by very low degree melting of the mantle. Yet establishing the presence of these melts and whether this process is on-going and continuous, or spatially and temporally restricted, has proved difficult. Here we report large U-Th-Ra disequilibria in metasomatised, mantle xenoliths erupted in very young lavas from the Newer Volcanics Province in southeastern Australia. The 226Ra-230Th disequilibria appear to require reappraisal of previous estimates for the age of eruption that now seems unlikely to be more than a few kyr at most. We propose that infiltration of carbonatitic melts/fluids, combined with crystallization of pargasite, can account for the first order U-series disequilibria observations. Irrespective of the exact details of the complex processes responsible, the half-lives of the nuclides require that some of the chemical and isotopic disturbance was extremely young (« 8?kyr) and potentially on-going at the time of incorporation into the alkali basalts that transported the xenoliths to the surface. This provides evidence for the presence and possibly continuing migration of small melt fractions (~0.02%) in the upper convecting mantle that may contribute to the seismic low velocity zone. By implication, it appears that the asthenosphere must lie close to its solidus, at least in this region. Pressure-temperature estimates indicate that the small degree melts identified could infiltrate as far as 25?km upwards into the sub-continental lithospheric mantle leading to strong incompatible element enrichment and the recent timing of this event this urges a reappraisal of the meaning of 300-500?Ma Nd model ages in mantle xenoliths from this region. In principle, the resultant metasomatised mantle could provide a component for some ocean island basalts, should the sub-continental lithospheric mantle be returned to the asthenosphere by convective removal at some later time.
DS202110-1642
2021
Tychkov, N.S., Agashev, A.M., Pokhilenko, N.P.Lithospheric refertilization trends in xenoliths and xenocrysts from the Udachnaya kimberlite ( Siberian craton).Doklady Earth Sciences, Vol. 499, 2, pp. 634-638.Russiadeposit - Udachnaya

Abstract: Comprehensive studies of peridotitic xenoliths from the Udachnaya kimberlite (Yakutian diamond province, Siberian craton) confirm that garnet shows inverse correlation of its volumetric percentage with its Cr2O3 contents in refertilizated peridotites, but no such correlation is observed in depleted peridotites. The correlation relationship plots as an isosceles hyperbola, which is consistent with the existing knowledge of origin of refertilized peridotite. The bulk content of aluminum is proportional to the garnet percentage both in depleted and refertilized peridotites, but Al2O3 in the rock correlates with Cr2O3 in garnet only in the refertilized varieties, while the two parameters are independent in depleted mantle rocks. According to the modeling of refertilization-related composition changes in the Udachnaya peridotites, garnet percentages are directly proportional to the amount of clinopyroxene (Gnt = 0.879*Cpx + 0.022, R2 = 0.78) and inversely proportional to that of olivine (Gnt = 0.026/Ol3.141, R2 = 0.79). As the shares of Gnt and Cpx increase from minimum values, orthopyroxene first increases (to 0.16) and then decreases since 0.65 Ol, 0.09 Cpx, and 0.10 Gnt. This model can constrain the place of the parent rock in the refertilization series knowing Cr2O3 contents in separate garnet grains. The average refertilization degree of lithospheric mantle in the region estimated from the compositions of more than 800 garnet xenocrysts in the Udachnaya kimberlite is expressed in the rock modal composition as: Ol = 0.72, Opx = 0.15, Gnt = 0.07, and Cpx = 0.06 (median values).
DS202112-1953
2018
Ugapeval, S., Molotkov, A., Popov, V., Vibration spectroscopy of central olivine inclusions in a diamond.Mineral Processing, conf. paper 7p. PdfRussiadeposit - Sytykan

Abstract: The results of studying characteristics of IR and Raman spectra of a diamond plate from the Sytykan pipe with central olivine inclusions are presented. The correlation between changes in the content of nitrogen defects and the internal stress of individual diamond growth zones is provided by IR spectroscopy. The total nitrogen content as A and B1 defects has a range from 81 ppm to 1075 ppm. Area of decreased nitrogen defects concentration in the centre of the diamond plate corresponds to the local pressure around the olivine inclusion. The results of the Raman spectroscopy of this sample showed that the olivine inclusion is stressed. In this connection, the maximum shift of the most intensive bands of SiO4 stretching vibrations is ?? = 5 ± 0.09 and 4 ± 0.12 cm-1, which corresponds to the internal residual pressure in the inclusion of Pi = 1.64 ± 0.1 GPa calculated by formulas given in (Izraeli, 1999; Yasuzuka, 2009). According to Izraeli, E. S. (1999) and the obtained results of Pi the pressure of diamond crystallization Pf = 6,4 ± 0,5 GPa at the model growth temperature of 1200°C is calculated. The area of diamond and inclusion contact zone is identified (bright yellow) by the Raman mapping, it exhibits wide bands 655 - 792 cm-1, typical for non-crystalline material such as Si2O(OH)6 dimers and Si(OH)4 monomers in an aqueous fluid (Nimis et al., 2016).
DS202101-0036
2014
Urubek, T., Dolnicek, Z., Kropac, K.Genesis of syntectonic hydrothermal veins in the igneous rock of teschenite association ( Outer western Carpathians, Czeck Republic): growth mechanisms and origin of fluids. ( REE) ** note dateGeologica Carpathica ** Eng, Vol. 65, 6, pp. 419-431. pdf doi: 10.15 /geoca-2015-0003Europe, Czech Republicalkaline rocks

Abstract: Hydrothermal mineralization hosted by the Lower Cretaceous igneous rock of the teschenite association at Jasenice (Silesian Unit, Flysch Belt, Outer Western Carpathians) occurs in two morphological types - irregular vein filled by granular calcite and regular composite vein formed by both fibrous and granular calcite and minor chlorite, quartz, and pyrite. Crosscutting evidence indicates that the granular veins are younger than the composite vein. The composite vein was formed by two mechanisms at different times. The arrangement of solid inclusions in the marginal fibrous zone suggests an episodic growth by the crack-seal mechanism during syntectonic deformation which was at least partially driven by tectonic suction pump during some stages of the Alpine Orogeny. Both the central part of the composite vein and monomineral veins developed in a brittle regime. In these cases, the textures of vein suggest the flow of fluids along an open fracture. The parent fluids of both types of vein are characterized by low temperatures (Th=66-163 °C), low salinities (0.4 to 3.4 wt. % NaCl eq.), low content of strong REE-complexing ligands, and ?18O and ?13C ranges of + 0.2/+12.5 %. SMOW and -11.8/-14.1 %. PDB, respectively. The parent fluids are interpreted as the results of mixing of residual seawater and diagenetic waters produced by dewatering of clay minerals in the associ-ated flysch sediments. The flow of fluids was controlled by tectonic deformation of the host rock.
DS202101-0037
2020
Vannucchi, P., Morgan, J.P., Polonia, A., Molli, G.The life cycle of subcontinental peridotites: from rifted continental margins to mountains via subduction processes.Geology, Vol. 48, pp. 1154-1158. pdfMantlesubduction

Abstract: Serpentinization greatly affects the physical and chemical properties of lithospheric mantle. Here we address the fate of serpentinized peridotites and their influence over an entire Wilson cycle. We document the near-surface journey of serpentinized subcontinental peridotites exhumed during rifting and continental breakup, reactivated as buoyant material during subduction, and ultimately emplaced as "ophiolite-like" fragments within orogenic belts. This life cycle is particularly well documented in former Tethys margins, where recent studies describe the ongoing incorporation of Mesozoic serpentinized subcontinental peridotites that diapirically rise from a subducting lower plate’s mantle to be emplaced into the accretionary prism in front of a continental arc. This newly recognized mode of subduction-linked serpentine diapirism from the downgoing lithospheric slab is consistent with the origin of some exhumed serpentinized subcontinental peridotites in the Apennines (Italy), these assemblages reaching their present locations during Alpine orogenesis. Transfer of serpentinized subcontinental peridotites from the downgoing to the overriding plate motivates the concept of a potentially "leaky" subduction channel. Weak serpentine bodies may in fact rise into, preferentially migrate within, and eventually leave the intraplate shear zone, leading to strong lateral heterogeneities in its composition and mechanical strength.
DS202104-0612
2020
Varga, P., Fodor, C.About the energy and age of the plate tectonics.Terra Nova, 10.1111/ter.12518 7p. PdfMantleplate tectonics

Abstract: Recently, a number of research findings have come to light about the age of plate tectonics, and energies are needed to operate it. The aim of present study is to investigate whether the energy of plate tectonics process was different during the Phanerozoic (Pz) and in earlier eons, and if there is such a discrepancy, whether it can be justified by changes in the processes that able to move the plates. The study will track temporal changes in important components of plate tectonics such as length of mid?ocean ridges, subduction zones and relative oceanic crust coverage during Phanerozoic. Next, it will be examined how the knowledge gained in this way can be reconciled with the results of studies of previous eons. It was found that the temporal variation in kinetic energy of axial rotation due to changes in length of day (LOD) can be assumed as a determining energy which acts on the tectonic plates as in the Phanerozoic as earlier in Archean (Arch) and Proterozoic (Ptz).
DS202108-1312
2021
Vasanti, A., Singh, A.P., Kumar, N., Nageswara Rao, B., Satyakumar, A.V., Santosh, M.Crust-mantle structure and lithospheric destruction of the oldest craton in the Indian shield.Precambrian Research, Vol. 362, 16p. PdfIndiacraton

Abstract: The Singhbhum craton is among the five Archean cratons of Peninsular India that preserves some of the oldest continental nuclei. In this work, we present a new and complete Bouguer gravity map of this craton with insights into its deep crust-mantle structure, lithospheric thickness and density variations beneath this craton. The conspicuous presence of high-order residual gravity low anomalies, together with low estimated densities, suggests voluminous presence of Singhbhum granitic batholiths that built the dominant crustal architecture. The isolated residual gravity highs correspond to the mafic and ultramafic volcanic suites like, Dhanjori, Simlipal and Dalma, while the relatively low gravity anomalies observed over the western volcanic suites like Malangtoli, Jagannathpur and Ongarbira, indicate their relatively felsic nature. The estimated lithospheric thickness of about ~ 130 km below the granitic batholithic region, and about 112 km beneath the Precambrian volcanic terranes, together with low effective elastic thickness (Te,) of only about 31 km, suggest a thin and weak lithosphere. The craton witnessed extensive lithospheric destruction with the removal of nearly 100-150 km of the cratonic root. The decratonization may be linked to subduction during the Paleo-Mesoproterozoic period, together with mantle plumes at different times, suggesting a combined mechanical, thermal and chemical erosion of the cratonic keel.
DS202104-0613
2021
Verly, G., Parker, H.M.Conditional simulation for mineral resource classification and mining dilution assessment from the early 1990's to now. *** Not specific to diamondsMathematical Geosciences, Vol. 53, pp. 279-300. pdfGlobalgeostatistics

Abstract: André Journel joined Stanford University in 1978, and his program grew quickly to include a dozen students from the USA, Canada, Europe, and South Africa. He was instrumental in organizing the Second International Geostatistical Conference (Tahoe ’83), during which 13 papers were presented that can be linked to his group. Out of these 13 papers, 9 were mining-related, with 7 on recoverable reserves, 2 on uncertainty, 2 on conditional simulation, and 3 on nonparametric geostatistics. A significant research effort at the time was therefore directed at change of support, global and local recoveries, and uncertainty, but future trends could also be identified, such as nonparametric geostatistics and conditional simulation. This paper is a practical review of conditional simulation as a tool to improve mineral resource estimation in the areas of uncertainty, classification, and mining selectivity or dilution, based on the authors’ experience. Some practical considerations for conditional simulation are briefly discussed. Four case studies from the early 1990s to the late 2010s are presented to illustrate some solutions and challenges encountered when dealing with real-world commercial projects.
DS202103-0419
2021
Vezinet, A., Pearson, A.D., Thomassot, E.Effects of contamination on whole rock isochrons in ancient rocks: a numerical modelling approach.Lithos, in press available, 44p. PdfGlobalmetamorphism

Abstract: Radiometric decay systems have played a crucial role in developing our understanding of the evolution of the early Earth. There are two main types of protocols for isotope measurements in geological materials: (i) bulk dissolution of rocks, or whole-grains and (ii) spatially resolved techniques (laser-ablation or ion-beam). These two approaches have sometimes led to results that are not easily reconciled for early Earth crustal rocks (? 3.6?Ga). While initial radiogenic isotope signatures (e.g. initial 176Hf/177Hf or initial 143Nd/144Nd) obtained from whole-rock protocols are significantly above chondritic values, indicative of extensive chemical differentiation of the mantle before 3.6?Ga, data from spatially resolved analysis of individual mineral growth domains point toward much less dramatic differentiation. This is indicated by the majority of data falling close to models of Earth's mantle that had not experienced major silicate melt removal into the crust. These data show chondritic or sub-chondritic signatures. Interpretations of whole rock isochrons are built on assumptions about the history and relationship of a number of different samples to each other. At the heart of these assumptions, the effects of secondary process-such as metasomatism-on isotopic compositions and consequently on the age and initial ratio of isochrons, are often considered negligible. In order to evaluate the possible effects of metasomatism and metamorphism on co-genetic igneous suites we modelled the impact of contamination by an external component on both the isochron slope (the apparent age) and the isochron intercept (the initial radiogenic isotope signature). A significant outcome is that the age significance of some of the modified isochron arrays remains to a large extent within uncertainty of the original crystallisation age of the igneous suite. In other words, the original age signature is preserved, but with lower precision. The intercept of the isochron, from which the initial isotope ratio is calculated, however is often significantly modified, which has consequences for the interpretation of these signatures. Our results provide an explanation for the discrepancy between whole-rock and spatially-resolved results observed in early Earth material. Lastly, our results, applied to studies of ancient crustal rocks, are interpreted as indicative of no significantly depleted mantle domains before 3.6?Ga, and no Hfsingle bondNd isotopes decoupling at that time.
DS202101-0038
2020
Viladkar, S.G.First discovery of carbonatite in India.Journal of the Geological Society of India, Vol. 96, 6, pp. 623-624.Indiacarbonatite
DS202109-1492
2021
Viladkar, S.G., Sorokhtina, N.V.Evolution of pyrochlore in carbonatites of the Amba Dongar complex, India.Mineralogical Magazine, Vol. 85, 4, pp. 554-567.Indiadeposit - Amba Dongar

Abstract: Pyrochlore-group minerals are common accessory rare-metal bearing minerals in the calcite and ankerite carbonatites of the Amba Dongar complex (India). Pyrochlore from the Amba Dongar carbonatites differs from that in other Indian complexes in Ta, Zr, Ti, rare earth element (REE) and Pb contents, but is similar with respect to Ca, Ba and Sr abundances. The evolution of pyrochlore composition was studied to understand the alteration processes and the formation of late-stage pyrochlores enriched in REE and Pb. The early magmatic pyrochlore are calcio- and niobium-dominant types and were replaced by secondary cation-deficient varieties as a consequence of the action of hydrothermal fluids and supergene weathering. These processes produce changes mainly at the A site, rarely at the B site, and the original F is replaced by OH- groups. Calcium and Na can be extracted from the structure at the alteration stage and charge balance is achieved by the introduction of REE, Th, U, Ba or Sr. At the latest supergene stages, marginal and fractured zones of pyrochlore grains are altered to Pb-rich, Si-rich and cation-deficient hydrated varieties. The magmatic pyrochlore was crystallised in a highly alkaline environment at a high activity of Ca and at temperatures near 600°C, the alteration of pyrochlore began in a hydrothermal environment at temperatures below 350°C. The major compositional changes that are associated with the alteration are summarised by the following reactions: Ca2+ + Nb5+? REE3+ + Ti4+; Nb5+ + Fe3+ ? Ti4+ + Zr4+; and 2Nb5+ + Ca2+ ? Ti4+ + Si4+ + U4+.
DS202102-0227
2021
Vilella, K., Bodin, T., Boukare, C-E.,Deschamp, F., Badro, J., Ballmer, M.D. Li, Y.Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals.Earth and Planetary Science Letters, Vol. 554, doi:10.1016/j.epsl.2020.116685Mantlegeophysics - seismic

Abstract: Here, we provide a reappraisal of potential LLSVPs compositions based on an improved mineralogical model including, for instance, the effects of alumina. We also systematically investigate the effects of six parameters: FeO and Al2O3 content, proportion of CaSiO3 and bridgmanite (so that the proportion of ferropericlase is implicitly investigated), Fe3+/?Fe and temperature contrast between far-field mantle and LLSVPs. From the 81 millions cases studied, only 79000 cases explain the seismic observations. Nevertheless, these successful cases involve a large range of parameters with, for instance, FeO content between 12--25~wt\% and Al2O3 content between 3--17~wt\%. We then apply a principal component analysis (PCA) to these cases and find two robust results: (i) the proportion of ferropericlase should be low (<6vol\%); (ii) the formation of Fe3+-bearing bridgmanite is much more favored than other iron-bearing phases. Following these results, we identify two end-member compositions, Bm-rich and CaPv-rich, and discuss their characteristics. Finally, we discuss different scenarios for the formation of LLSVPs and propose that investigating the mineral proportion produced by each scenario is the best way to evaluate their relevance. For instance, the solidification of a primitive magma ocean may produce FeO and Al2O3 content similar to those suggested by our analysis. However, the mineral proportion of such reservoirs is not well-constrained and may contain a larger proportion of ferropericlase than what is allowed by our results.
DS202102-0228
2021
Viles, H.A., Goudie, A.S., Goudie, A.M.Ants as geomorphological agents: a global assessment.Earth-Science Reviews, Vol. 213, doi.org/10.1016/j.earscirev.2020.103469 17p. PdfGlobalgeomorphology

Abstract: Ants are abundant in most of the world's terrestrial environments. They are energetic, strong for their size, numerous, and socially cooperative. They play many geomorphologically important roles. In particular, they construct mounds and subterranean galleries, create patterned ground, play a role in bioturbation, affect vegetation cover and soil properties (such as infiltration rate) and influence runoff and erosion. They also play roles in biogeochemical cycling and rock and mineral weathering. Here, we review and reanalyse data collected from over 80 studies on ant contributions to geomorphology from around the world. The clearest manifestation of the geomorphological role of ants is found in their various constructions, such as mounds. There can be hundreds or thousands of mounds per hectare, with a median density of 125 ha?1 recorded in the studies reviewed. The longevity of these features varies and some are stable while others are highly erodible. The construction of mounds and galleries causes bioturbation (pedoturbation), a role which ants share with termites, worms and many mammals. A median rate of 1.5 t ha?1 a?1 is derived from the studies reviewed. Ants also produce patterned ground through their effects on vegetation. The relationships between ant activity and runoff and erosion are complex and not consistent. Bioturbation of soil, tunnelling activity, the construction of underground chambers, galleries and macro-pores, the removal and/or accumulation of organic material, and changes in vegetation cover, are all mechanisms by which ants might modify soil infiltration characteristics. Because of their effect on soil infiltration rates, sediment provision and on vegetation cover, ants can have a profound influence on runoff and soil movement on slopes. Only a modest amount of work has been done to investigate the role that ants play in rock weathering. Ants are greatly affected by human activities (especially land cover changes), and some geomorphologically-active species have proved to be highly invasive. The response of ants to future climate changes needs further investigation.
DS202103-0420
2021
Vladykin, N.V., Pirajno, F.Types of carbonatites: geochemistry, genesis and mantle sources.Lithos, Vol. 386-387, 105982, 13p. PdfGlobalcarbonatite

Abstract: Three types of carbonatites have been identified based on the analysis of alkaline complexes using geological, petrological, and geochemical data. It has been suggested that for distinguishing carbonatite complexes into these three types, the following criteria should be used: a) the alkalinity type (Na- or K- richer primary magmas) and b) the time when the carbonatite liquid separates from silicate melts in different stages of primary magma differentiation. The first type is genetically related to the kimberlite magmatism and the carbonatite liquid separates from ultramafic magma. The second type is associated with Na-rich alkaline ultramafic rocks and the carbonatite component separates when pyroxenites and ijolites crystallize. The third type is related to K-alkaline complexes and the carbonatite component separates when syenites and granites crystallize. In this article we discuss the geochemical characteristics of all 3 types and outline the difference between them. A model for the formation of carbonatite complexes under the influence of mantle plume processes is given. The geochemistry of C, O, Sr, and Nd isotopes shows that carbonatite complexes, depending on their geotectonic setting (platform surrounding, orogenic areas and rift zones) can originate from three types of mantle sources: depleted mantle, enriched mantle 1 (EM1), and enriched mantle 2 (EM2).
DS202101-0039
2020
Voosen, P.Slowdown in plate tectonics may have led to Earth's ice sheets.Sciencemag,org, Dec. 22, 3p.Mantletectonics

Abstract: In seafloor trenches around the world, slabs of old ocean crust fall in slow motion into the mantle, while fresh slabs are built at midocean ridges, where magma emerges at the seams between separating tectonic plates. The engine is relentless, but maybe not so steady: Beginning about 15 million years ago, in the late Miocene epoch, ocean crust production declined by one-third over 10 million years to a slow pace that pretty much continues to today, says Colleen Dalton, a geophysicist at Brown University who presented the work this month at a virtual meeting of the American Geophysical Union. "It’s a global phenomenon."
DS202109-1493
2021
Vorandes, S.Jewels that made history: 100 stones, myths and legends. Book 224p. Reviewed in Gems & JeweleryRizzol, New York Pub., Vol. 30, 2, pp. 42-45. Globalbook review

Abstract: The history of the world--triumphs and tragedies, breakthroughs and breakups--through the iconic jewels that have inspired and influenced since the dawn of time. From ancient treasures to royal weddings, great heists to the red carpet, this book is a stunning, surprising, and glittering tour of historic turning points and gem-driven drama, delving into the passions and predilections of some of the world's most interesting and extraordinary people. Starting in the era of Cleopatra and continuing through to contemporary jewelry statements by Jennifer Lopez, Lady Gaga, and Meghan Markle, Stellene Volandes tells the stories of how shiny stones and precious metals have determined empires, inspired expeditions and great crime, and been the communicator of status and ruin since ancient times. Each moment is placed in historic and relevant context, with Volandes drawing engaging parallels between Napoleon's gift to Marie Louise at the birth of their son and the modern push present or the insouciant story behind the brooch Jackie Kennedy famously wore to a 1962 State Dinner with the Shah of Iran. Illustrated with a mix of archival images and gorgeous photography of the jewels, this book is a beautiful, informative, and essential read for history lovers, fashion, celebrity, and pop-culture followers, as well as passionate jewel hounds.
DS202105-0798
2021
Wallace, P.J., Plank, T., Bodnar, R.J., Gaetani, G.A., Shea, T.Olivine-hosted melt inclusions: a microscopic perspective on a complex magmatic world.Annual Review of Earth Planetary Sciences, Vol. 49, pp. 465-484.MantleMagmatism

Abstract: Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H2O and CO2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work.
DS202107-1144
2021
Wallace, P.J., Plank, T., Bodnar, R.J., Gaetani, G.A., Shea, T.Olivine-hosted melt inclusions: a microscopic perspective on a complex magmatic world.Annual Review of Earth and Planetary Sciences, Vol. 49, pp. 465-494.Mantlemagmatism

Abstract: Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H2O and CO2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work. Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes. These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts. The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals. Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively.
DS202109-1494
2021
Walter, B.F., Giebel, R.J., Steele-MacInnis, M., Marks, M.A., Kolb, J., Markl, G.Fluids associated with carbonatitic magmatism: a critical review and implications for carbonatite magma ascent.Earth Science Reviews , Vol. 215, 103509, 27p. PdfMantlemagmatism

Abstract: Carbonatites are formed from volatile-rich melts, commonly associated with a characteristic hydrothermal footprint. However, studies of their fluid inclusions are relatively scarce and heterogeneous in terms of detail and completeness of the data presented. Here, we review and discuss comprehensively the results of previous studies and derive a general model for the formation and properties of fluids associated with carbonatitic magmatism. Worldwide, four types of fluid inclusion occur in carbonatites: (type I/HS) vapour-poor H2O-NaCl fluids with up to 50 wt% salinity; (type II/HC) vapour-rich H2O-NaCl-CO2 fluids with <5 wt% salinity; (type III/DS) multi-component fluids with high salinity and without CO2; and (type IV/CDS) multi-component fluids with high salinity and high CO2. This global dataset suggests continuous fluid release from deep to shallow-level intrusions. Modelling of the liquidus surface indicates that carbonatite magmas generally exsolve a saline brine (type I/HS). This brine separates/evolves into a Na-K-sulfate-carbonate/bicarbonate-chloride brine with or without CO2 (types III/DS and IV/CDS), trapped together with low salinity CO2-rich fluids produced by immiscibility. Fluid immiscibility is related to rapid pressure release during fast, forceful and discontinuous magma ascent, which we envisage as a "pneumatic jackhammer" model for carbonatite ascent and emplacement. In this model, cyclic and progressive fluid flux via pressure build-up and subsequent catastrophic pressure release results in a self-sustaining crustal ascent of the buoyant, low-viscosity magma. This process allows for rapid and efficient magma ascent, in particular above the brittle-ductile transition zone, where pressures that prevailed during apatite crystallization have been estimated in numerous complexes. Moreover, this model provides an explanation for the apparent absence of shallow carbonatite magma chambers (in a classical sense) and identifies fenitization as a phenomenon induced by both fluids released during magma ascent and residual fluids.
DS202101-0040
2021
Wang, C., Mitchell, Ross.N., Murphy, J.B., Peng, P., Spencer, C.J.The role of megacontinents in the supercontinent cycle.Geology, in press availabe 5p. PdfMantlePangea

Abstract: Supercontinent Pangea was preceded by the formation of Gondwana, a “megacontinent” about half the size of Pangea. There is much debate, however, over what role the assembly of the precursor megacontinent played in the Pangean supercontinent cycle. Here we demonstrate that the past three cycles of supercontinent amalgamation were each preceded by ~200 m.y. by the assembly of a megacontinent akin to Gondwana, and that the building of a megacontinent is a geodynamically important precursor to supercontinent amalgamation. The recent assembly of Eurasia is considered as a fourth megacontinent associated with future supercontinent Amasia. We use constraints from seismology of the deep mantle for Eurasia and paleogeography for Gondwana to develop a geodynamic model for megacontinent assembly and subsequent supercontinent amalgamation. As a supercontinent breaks up, a megacontinent assembles along the subduction girdle that encircled it, at a specific location where the downwelling is most intense. The megacontinent then migrates along the girdle where it collides with other continents to form a supercontinent. The geometry of this model is consistent with the kinematic transitions from Rodinia to Gondwana to Pangea.
DS202103-0421
2021
Wang, C., Zhang, Z., Giuliani, A., Cheng, Z., Liu, B., Kong, W.Geochemical and O-C-Sr-Nd isotopic constraints on the petrogenetic link between aillikites and carbonatites in the Tarim Large Igneous Province.Journal of Petrology, in press available 69p. PdfChinacarbonatites

Abstract: Aillikites are carbonate-rich ultramafic lamprophyres often associated with carbonatites. Despite their common field relationships, the petrogenetic links, if any, between aillikites and carbonatites remain controversial. To address this question, this study reports the results of a detailed geochemical and isotopic examination of the Permian Wajilitag aillikites in the northwestern Tarim large igneous province, including bulk-rock major-, trace-element and Sr-Nd isotope compositions, olivine major- and trace-element and (in-situ secondary ion mass spectrometry) oxygen isotope compositions, oxygen isotope data for clinopyroxene separates, and bulk-carbonate C-O isotopic analyses. Olivine in the aillikites occurs in two textural types: (i) microcrysts, 0.3-5?mm; and (ii) macrocrysts, 0.5-2.5?cm. The microcrysts exhibit well-defined linear correlations between Fo (79-89), minor and trace elements (e.g., Ni?=?1304-3764??g/g and Mn?=?1363-3042??g/g). In contrast, the olivine macrocrysts show low Fo79-81, Ni (5.3-442??g/g) and Ca (477-1018??g/g) and very high Mn (3418-5123??g/g) contents, and are displaced from the compositional trend of the microcrysts. The microcrysts are phenocrysts crystallized from the host aillikite magmas. Conversely, the lack of mantle-derived xenoliths in these aillikites suggests that the macrocrysts probably represent cognate crystals (i.e., antecrysts) that formed from earlier, evolved aillikite melts. Olivine phenocrysts in the more primitive aillikite dykes (Dyke 1) have relatively higher Fo82-89 and mantle-like oxygen isotope values, whereas those in the more evolved dykes (Dyke 2 and 3) exhibit lower Fo79-86 and oxygen isotope values that trend toward lower than mantle ?18O values. The decreasing ?13C values of carbonate from Dyke 1 through to Dyke 2 and 3, coupled with the indistinguishable Sr-Nd isotopes of these dykes, suggest that the low ?18O values of olivine phenocrysts in Dyke 2 and 3 resulted from carbonate melt/fluid exsolution from a common progenitor melt. These lines of evidence combined with the overlapping emplacement ages and Sr-Nd isotope compositions of the aillikites and carbonatites in this area suggest that these exsolved carbonate melts probably contributed to the formation of the Tarim carbonatites thus supporting a close petrogenetic relationship between aillikites and carbonatites.
DS202108-1313
2021
Wang, C., Zhang, Z., Xie, Q., Cheng, Z., Kong, W., Liu, B., Santosh, M., Jin, S.Olivine from aillikites in the Tarim large igneous province as a window into mantle metasomatism and multi-stage magma evolution.American Mineralogist, Vol. 106, pp. 1064-1076.Chinametasomatism

Abstract: Aillikites are carbonate-rich ultramafic lamprophyres, and although they are volumetrically minor components of large igneous province (LIP), these rocks provide important clues to melting and meta-somatism in the deep mantle domain during the initial stages of LIPs. In this study, we investigate the Wajilitag “kimberlites” in the northwestern part of the Tarim LIP that we redefine as hypabyssal aillikites based on the following features: (1) micro-phenocrystic clinopyroxene and Ti-rich andradite garnet occurring in abundance in the carbonate-rich matrix; (2) Cr-spinel exhibiting typical Fe-Ti enrichment trend also known as titanomagnetite trend; and (3) olivine showing dominantly low Mg values (Fo < 90). To constrain the magma source and evolution, the major, minor, and trace element abundance in olivine grains from these rocks were analyzed using electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. Olivine in the aillikites occurs as two textural types: (1) groundmass olivines, as sub-rounded grains in matrix, and (2) macrocrysts, as euhedral-anhedral crystals in nodules. The groundmass olivines show varying Mg (Fo89-80) with high-Ni (1606-3418 ppm) and Mn (1424-2860 ppm) and low-Ca (571-896 ppm) contents. In contrast, the macrocrysts exhibit a restricted Fo range but a wide range in Ni and Mn. The former occurs as phenocrysts, whereas the latter are cognate cumulates that formed from earlier, evolved aillikite melt. The two olivine populations can be further divided into sub-groups, indicating a multi-stage crystallization history of the aillikite melt. The crystallization temperatures of groundmass olivines and macrocrysts in dunite nodules as computed from the spinel-olivine thermometers are 1005-1136 and 906-1041 °C, respectively. The coupled enrichment of Ca and Ti and lack of correlation between Ni and Sc and Co in the olivine grains suggest a carbonate-silicate metasomatized mantle source. Moreover, the high 100•Mn/Fe (average 1.67) at high Ni (up to 3418 ppm), overlapping with OIB olivine, and the 100•Ni/Mg (~1) of primitive Mg-Ni-rich groundmass olivines suggest a mixed source that involved phlogopite- and carbonate-rich metasomatic veins within mantle peridotite.
DS202112-1954
2021
Wang, J., Su, B-X., Ferrero, S., Malaviarachchi, S.P.K., Sakyi, P.A., Yang, Y-H., Dharmapriya, P.L.Crustal derivation of the ca 475 Ma Eppawala carbonatites in Sri Lanka.Journal of Petrology, Vol. 62, 11, pp.1-18. pdfAsia, Sri Lankacarbonatite

Abstract: Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0•70479-0•70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1•3-2•0 Ga) of both Nd and Hf isotopes [apatite ?Nd(t)?=??9•2 to ?4•7; rutile ?Hf(t)?=??22•0 to ?8•02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (?13CPDB?=??2•36 to ?1•71; ?18OSMOW?=?13•91-15•13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with the chemistry of accessory minerals in the carbonatites, such as Ni-free olivine and Al- and Cr-poor rutile. Modeling results demonstrate that the Eppawala carbonatite magmas originated from a mixture of basement gneisses and marbles, probably during regional metamorphism. This interpretation is supported by the occurrence of the carbonatites along, or near, the axes of synforms and antiforms where granitic gneiss and marble are exposed. Therefore, we propose that the Eppawala carbonatites constitute another rare example of a carbonatitic magma that was derived from melting of a sedimentary carbonate protolith. Our findings suggest that other orogenic carbonatites with similar features should be re-examined to re-evaluate their origin.
DS202102-0229
2020
Wang, W., Yazawa, E., Persaud, S., Myagkaya, E., D'Haenens-Johansson, U., Moses, T.M.Formation of the Matryoshka diamond from Siberia.Gems & Gemology , Vol. 56, 1, pp. 127-129.Russia, Siberiadiamond crystalography

Abstract: A freely moving diamond trapped inside another diamond was discovered in Siberia by Alrosa in 2019. The unusual diamond, nicknamed the “Matryoshka” after the traditional Russian nesting dolls, attracted widespread interest in how this feature formed.
DS202102-0230
2021
Wang, W., Zhang, H., Brodholt, J.P., Wu, Z.Elasticity of hydrous ringwoodite at mantle conditions: implications: implication for water distribution in the lower mantle transition zone.Earth and Planetary Science Letters, Vol. 554, doi:10.1016/ j.epsl.2020. 116626 12p. PdfMantlewater

Abstract: The mantle transition zone (MTZ) is potentially a geochemical water reservoir because of the high H2O solubility in its dominant minerals, wadsleyite and ringwoodite. Whether the MTZ is wet or dry fundamentally impacts our understanding of the deep-water distribution, geochemical recycling, and the pattern of mantle convection. However, the water content in the MTZ inferred from previous studies remains disputed. Seismic observations such as velocity anomalies were used to evaluate the water content in the MTZ, but the hydration effect on the velocities of MTZ minerals under appropriate pressure (P) and temperature (T) conditions is poorly constrained. Here we investigated the elastic properties and velocities of hydrous ringwoodite at high P-T conditions using first-principles calculations. Our results show that the hydration effects on elastic moduli and velocities of ringwoodite are significantly reduced by pressure but strongly enhanced by temperature. The incorporation of 1.0 wt% water into ringwoodite decreases the compressional and shear velocities of the pyrolitic mantle by ?1.0% and ?1.4% at the conditions of MTZ, respectively. Using results from seismic tomography and together with the topography of the 660-km discontinuity, we evaluate the global distribution of water in the lower MTZ. We find that about 80% of the MTZ can be explained by varying water content and temperature, however, the remaining 20% requires the presence of high-velocity heterogeneities such as harzburgite. Our models suggest an average water concentration of ?0.2 wt% in the lower MTZ, with an interregional variation from 0 to 0.9 wt%. Together with our previous work, we conclude that the water concentration in the MTZ likely decreases with depth globally and the whole MTZ contains the equivalent of about one ocean mass of water.
DS202104-0614
2021
Wang, W.,Liu, J., Yang, H., Dorfman, S.M., Lv, M., Li, J., Zhao, J., Hu, M.Y., bi, W., Alp, E.E., Xiao, Y., Wu, Z., Lin, J-F.Iron force constants of bridgmanite at high pressure: implications for iron isotope fractionation in the deep mantle.Geochimica et Cosmochimica Acta, Vol. 294, pp. 215-231. pdfMantlebridgmanite

Abstract: The isotopic compositions of iron in major mantle minerals may record chemical exchange between deep-Earth reservoirs as a result of early differentiation and ongoing plate tectonics processes. Bridgmanite (Bdg), the most abundant mineral in the Earth’s lower mantle, can incorporate not only Al but also Fe with different oxidation states and spin states, which in turn can influence the distribution of Fe isotopes between Bdg and ferropericlase (Fp) and between the lower mantle and the core. In this study, we combined first-principles calculations with high-pressure nuclear resonant inelastic X-ray scattering measurements to evaluate the effects of Fe site occupancy, valence, and spin states at lower-mantle conditions on the reduced Fe partition function ratio (?-factor) of Bdg. Our results show that the spin transition of octahedral-site (B-site) Fe3+ in Bdg under mid-lower-mantle conditions generates a +0.09‰ increase in its ?-factor, which is the most significant effect compared to Fe site occupancy and valence. Fe2+-bearing Bdg varieties have smaller ?-factors relative to Fe3+-bearing varieties, especially those containing B-site Fe3+. Our models suggest that Fe isotopic fractionation between Bdg and Fp is only significant in the lowermost mantle due to the occurrence of low-spin Fe2+ in Fp. Assuming early segregation of an iron core from a deep magma ocean, we find that neither core formation nor magma ocean crystallization would have resulted in resolvable Fe isotope fractionation. In contrast, Fe isotopic fractionation between low-spin Fe3+-bearing Bdg/Fe2+-bearing Fp and metallic iron at the core-mantle boundary may have enriched the lowermost mantle in heavy Fe isotopes by up to +0.20‰.
DS202102-0231
2020
Wang, Y., Miller, J.D.Current developments and applications of micro-CT for the 3D analysis of multiphase mineral systems in geometallurgy. ( not specific to diamonds)Earth-Science Reviews, Vol. 211, doi.org/10.1016/ j.earscirev.2020. 103406 26p. Pdf Globalmetallurgy

Abstract: The use of X-ray micro computed tomography (X-ray micro-CT) for three-dimensional (3D) characterization of multiphase systems continues to increase in metallurgical research. In recent years, a number of technical developments in X-ray sources and X-ray imaging arrays have broadened the utility of micro-CT. Here, the authors review the current state-of-the-art tomographic techniques for both qualitative and quantitative geometallurgical characterization. This review first considers the basic principles of tomography and commonly used tomographic systems. The advantages and disadvantages (shortcomings) of micro-CT are discussed. Software development, including current image reconstruction algorithms, such as traditional weighted back projection and iterative reconstruction algorithms, as well as image segmentation tasks, are then discussed for processing 3D images and conducting quantitative analysis. Based on the development of hardware and software, applications involved in geometallurgy and minerals engineering are then thoroughly discussed. Specifically, applications include the determination of microstructure such as particle size, shape, and damage, as well as porosity and pore network structure of packed particle beds. In this way, the permeability, mineral composition, coal washability, mineral liberation, and exposed grain surface area can be determined.
DS202101-0041
2020
Wang, Y-F., Qin, J-Y., Soustelle, V., Zhang, J-F., Xu, H-J.Pyroxene does not always preserve its source hydrogen concentration: clues from peridotite xenoliths. Geochimica et Cosmochimica Acta, in press availabe 38p. PdfChinametasomatism

Abstract: Water is key to many geodynamical processes in the Earth's upper mantle, yet its preservation in mantle minerals is still debated. To throw some light on this problem, we here carried out an integrated study of whole-rock and mineral chemistry, and hydrogen concentrations in olivine, orthopyroxene, and clinopyroxene within 18 spinel lherzolite samples from three localities (Lianshan, Panshishan, and Tashan) in the Nanjing area, eastern China. Whole-rock and mineral compositions suggest that the studied peridotite samples interacted with melt at different melt/rock ratios following various degrees of partial melting (up to 11%). Fourier transform infrared (FTIR) measurements show that olivine is almost dry (<1 wt ppm H2O) while the cores of orthopyroxene and clinopyroxene contain 14-151 wt ppm H2O and 41-218 wt ppm H2O, respectively. Profile analyses of >70 orthopyroxene grains, which are homogeneous in major-element compositions, covering all the studied samples show hydrogen-depleted rims, indicative of hydrogen diffusional loss. This hydrogen zonation is probably caused by hydrogen chemical diffusion controlled by the mobility of trivalent cations (most likely Al3+) in response to magma degassing or partial melting of peridotite during ascent, or interactions of peridotite with melt, or a combination of these processes. By contrast, no hydrogen zonation is observed in clinopyroxene. Based upon the comparison of chemical compositions (especially Fe and AlIV contents) of clinopyroxene within our samples with those in diffusion experiments, it is inferred that the hydrogen diffusivity in clinopyroxene should be larger than that in orthopyroxene from our samples. This inference points to that clinopyroxene within the studied samples must have experienced diffusional loss of hydrogen as well, suggesting that water concentrations in the lithospheric mantle beneath the study area are probably underestimated. Furthermore, it also implies that orthopyroxene instead of clinopyroxene most likely preserves the in-situ water concentrations at depth, at least at its core. The absence of hydrogen zonation in clinopyroxene can be attributed to its fine-grained nature and fast hydrogen diffusivity. Our FTIR data also show that Lianshan and Tashan samples have water concentration ratio between clinopyroxene and orthopyroxene (RCpx/Opx) of ?2, similar to mantle xenoliths from eastern China and other localities worldwide, yet Panshishan samples have higher RCpx/Opx values (2.3-5.9). Since hydrogen loss is suggested for both pyroxenes, RCpx/Opx of ?2 thus cannot be taken as a reliable indicator of preservation of original water concentration of mantle source and equilibrium partitioning of hydrogen between pyroxene, as opposed to previous suggestions.
DS202101-0042
2020
Watchorn, B.Pt. 6 African continent evolution research using ultra-detailed landsat amd seismic tomography from surface to 2,900 km depth. Implications for plate tectonics, continent formation and the genesis and targeting of mineralization. Not specific to diamonds.Geotreks, https://www.geotreks.com.au/ work/.giant-ring-structures /africa-seismic- tomography-210-km-depthAfricatomography

Abstract: The majority of this paper is a transcription from the video of the AusIMM Webinar at the Western Australian, South West Branch on the 30th July 2020. To view the video go to https://vimeo.com/464013825/1ed4a0c752 . Start listening at about 5 minutes in. The language in this paper is thus vernacular and not geologese. This should make it more easily read and understood by the majority of readers. Africa is a rich source of minerals. The main mining fields in Africa are located on the ring structures and linears from the surface right to the limits of detailed data at 400 km depth. The mechanism and source of the fluid for most mineralisation may have been discovered by this research. This Part 6 section describes the relationship of the metal and diamond mineralisation to the linear and ring structures observed in African seismic tomography at 170-250 km depth.
DS202112-1955
2021
Watts, K.E., Haxel, G.B., Miller, D.M.Temporal and petrogenetic links between Mesoproterozoic alkaline and carbonatite magmas at Mountain Pass, California.Economic Geology, Vol. 117, 1, pp. 23p.United States, Californiadeposit - Mountain Pass

Abstract: Mountain Pass is the site of the most economically important rare earth element (REE) deposit in the United States. Mesoproterozoic alkaline intrusions are spatiotemporally associated with a composite carbonatite stock that hosts REE ore. Understanding the genesis of the alkaline and carbonatite magmas is an essential scientific goal for a society in which critical minerals are in high demand and will continue to be so for the foreseeable future. We present an ion microprobe study of zircon crystals in shonkinite and syenite intrusions to establish geochronological and geochemical constraints on the igneous underpinnings of the Mountain Pass REE deposit. Silicate whole-rock compositions occupy a broad spectrum (50-72 wt % SiO2), are ultrapotassic (6-9 wt % K2O; K2O/Na2O = 2-9), and have highly elevated concentrations of REEs (La 500-1,100× chondritic). Zircon concordia 206Pb/238U-207Pb/235U ages determined for shonkinite and syenite units are 1409 ± 8, 1409 ± 12, 1410 ± 8, and 1415 ± 6 Ma (2?). Most shonkinite dikes are dominated by inherited Paleoproterozoic xenocrysts, but there are sparse primary zircons with 207Pb/206Pb ages of 1390-1380 ± 15 Ma for the youngest grains. Our new zircon U-Pb ages for shonkinite and syenite units overlap published monazite Th-Pb ages for the carbonatite orebody and a smaller carbonatite dike. Inherited zircons in shonkinite and syenite units are ubiquitous and have a multimodal distribution of 207Pb/206Pb ages that cluster in the range of 1785-1600 ± 10-30 Ma. Primary zircons have generally lower Hf (<11,000 ppm) and higher Eu/Eu* (>0.6), Th (>300 ppm), Th/U (>1), and Ti-in-zircon temperatures (>800°C) than inherited zircons. Oxygen isotope data reveals a large range in ?18O values for primary zircons, from mantle (5-5.5‰) to crustal and supracrustal (7-9‰). A couple of low-?18O outliers (2‰) point to a component of shallow crust altered by meteoric water. The ?18O range of inherited zircons (5-10‰) overlaps that of the primary zircons. Our study supports a model in which alkaline and carbonatite magmatism occurred over tens of millions of years, repeatedly tapping a metasomatized mantle source, which endowed magmas with elevated REEs and other diagnostic components (e.g., F, Ba). Though this metasomatized mantle region existed for the duration of Mountain Pass magmatism, it probably did not predate magmatism by substantial geologic time (>100 m.y.), based on the similarity of 1500 Ma zircons with the dominantly 1800-1600 Ma inherited zircons, as opposed to the 1450-1350 Ma primary zircons. Mountain Pass magmas had diverse crustal inputs from assimilation of Paleoproterozoic and Mesoproterozoic igneous, metaigneous, and metasedimentary rocks. Crustal assimilation is only apparent from high spatial resolution zircon analyses and underscores the need for mineral-scale approaches in understanding the genesis of the Mountain Pass system.
DS202107-1145
2021
Webb, K., Hetman, C.Magmaclasts in kimberlite.Lithos, Vol. 396-397, 106197 pdfGlobalKimberlite emplacement

Abstract: This contribution presents an updated descriptive scheme for magmaclasts in kimberlite, resulting from over 40 combined years of mapping, logging, and petrographic studies by the authors of hundreds of kimberlites and related rocks globally. Systematic description of the essential characteristics of magmaclasts enables their identification, classification and interpretation. Magmaclasts are fluidal-shaped bodies of kimberlite magma (now solidified) formed by any process of magma disruption prior to solidification. The key characteristics used to discriminate the two main varieties, melt segregations and melt-bearing pyroclasts, are explained and illustrated, as well as the features of melt-bearing pyroclasts in the two main classes of pyroclastic kimberlite. Accurate classification of magmaclasts in coherent and volcaniclastic kimberlites is fundamental for the development of valid geological models in support of exploration, evaluation and mine planning. Magmaclasts are used to determine parental magma type, the textural-genetic classification of the infills of kimberlite bodies, the presence of different eruptive phases (and mixing between them), and the emplacement history of a kimberlite. They can also provide insight on potential modification of the inherent diamond distribution of a kimberlite.
DS202106-0976
2021
Weiss, Y., Kiro, Y., Class, C., Winckler, G., Harris, J.W., Goldstein, S.L.Helium in diamonds unravels over a billion years of craton metasomatism. KaapvaalNature Communications, Vol. 12, 2667, 11p. PdfAfrica, South Africageochronology

Abstract: Chemical events involving deep carbon- and water-rich fluids impact the continental lithosphere over its history. Diamonds are a by-product of such episodic fluid infiltrations, and entrapment of these fluids as microinclusions in lithospheric diamonds provide unique opportunities to investigate their nature. However, until now, direct constraints on the timing of such events have not been available. Here we report three alteration events in the southwest Kaapvaal lithosphere using U-Th-He geochronology of fluid-bearing diamonds, and constrain the upper limit of He diffusivity (to D???1.8?×?10?19 cm2 s?1), thus providing a means to directly place both upper and lower age limits on these alteration episodes. The youngest, during the Cretaceous, involved highly saline fluids, indicating a relationship with late-Mesozoic kimberlite eruptions. Remnants of two preceding events, by a Paleozoic silicic fluid and a Proterozoic carbonatitic fluid, are also encapsulated in Kaapvaal diamonds and are likely coeval with major surface tectonic events (e.g. the Damara and Namaqua-Natal orogenies).
DS202112-1956
2021
West, B.Looking back to move forward: old diamonds and contemporary ethics a new advertising campaign….Gems & Jewellery, Vol. 30, 3, pp. 37-39.Globalhistory
DS202101-0043
2020
Wheeler, J.A unifying basis for the interplay of stress and chemical processes in the Earth: support from diverse experiments.Contributions to Mineralogy and Petrology, dor.org/10.1007/ s00410-020-01750-9 27p. PdfMantleGeothermometry

Abstract: The interplay between stress and chemical processes is a fundamental aspect of how rocks evolve, relevant for understanding fracturing due to metamorphic volume change, deformation by pressure solution and diffusion creep, and the effects of stress on mineral reactions in crust and mantle. There is no agreed microscale theory for how stress and chemistry interact, so here I review support from eight different types of the experiment for a relationship between stress and chemistry which is specific to individual interfaces: (chemical potential)?=?(Helmholtz free energy)?+?(normal stress at interface)?×?(molar volume). The experiments encompass temperatures from -100 to 1300 degrees C and pressures from 1 bar to 1.8 GPa. The equation applies to boundaries with fluid and to incoherent solid-solid boundaries. It is broadly in accord with experiments that describe the behaviours of free and stressed crystal faces next to solutions, that document flow laws for pressure solution and diffusion creep, that address polymorphic transformations under stress, and that investigate volume changes in solid-state reactions. The accord is not in all cases quantitative, but the equation is still used to assist the explanation. An implication is that the chemical potential varies depending on the interface, so there is no unique driving force for reaction in stressed systems. Instead, the overall evolution will be determined by combinations of reaction pathways and kinetic factors. The equation described here should be a foundation for grain-scale models, which are a prerequisite for predicting larger scale Earth behaviour when stress and chemical processes interact. It is relevant for all depths in the Earth from the uppermost crust (pressure solution in basin compaction, creep on faults), reactive fluid flow systems (serpentinisation), the deeper crust (orogenic metamorphism), the upper mantle (diffusion creep), the transition zone (phase changes in stressed subducting slabs) to the lower mantle and core mantle boundary (diffusion creep).
DS202102-0232
2020
Wheeler, J.A unifying basis for the interplay of stress and chemical processes in the Earth: support from diverse experiments.Contributions to mineralogy and Petrology, Vol. 175, 27p. PdfMantlemineralogy, geochemistry

Abstract: The interplay between stress and chemical processes is a fundamental aspect of how rocks evolve, relevant for understanding fracturing due to metamorphic volume change, deformation by pressure solution and diffusion creep, and the effects of stress on mineral reactions in crust and mantle. There is no agreed microscale theory for how stress and chemistry interact, so here I review support from eight different types of the experiment for a relationship between stress and chemistry which is specific to individual interfaces: (chemical potential)?=?(Helmholtz free energy)?+?(normal stress at interface)?×?(molar volume). The experiments encompass temperatures from -100 to 1300 degrees C and pressures from 1 bar to 1.8 GPa. The equation applies to boundaries with fluid and to incoherent solid-solid boundaries. It is broadly in accord with experiments that describe the behaviours of free and stressed crystal faces next to solutions, that document flow laws for pressure solution and diffusion creep, that address polymorphic transformations under stress, and that investigate volume changes in solid-state reactions. The accord is not in all cases quantitative, but the equation is still used to assist the explanation. An implication is that the chemical potential varies depending on the interface, so there is no unique driving force for reaction in stressed systems. Instead, the overall evolution will be determined by combinations of reaction pathways and kinetic factors. The equation described here should be a foundation for grain-scale models, which are a prerequisite for predicting larger scale Earth behaviour when stress and chemical processes interact. It is relevant for all depths in the Earth from the uppermost crust (pressure solution in basin compaction, creep on faults), reactive fluid flow systems (serpentinisation), the deeper crust (orogenic metamorphism), the upper mantle (diffusion creep), the transition zone (phase changes in stressed subducting slabs) to the lower mantle and core mantle boundary (diffusion creep).
DS202102-0233
2021
White, M.A., Kahwaji, S., Freitas, V.L.S., Siewert, R., Weatherby, J.A., Ribeiro da Silva, M.D.M.C., Verevkin, S.P., Johnson, E.R., Zwanziger, J.W.The relative thermodynamic stability of diamond and graphite.Angewandte Chemie International, Vol. 60, 3, pp. 1546-1549. pdfGlobaldiamond, graphite

Abstract: Recent density?functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high?accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure. At low temperatures, the stability is enthalpically driven, and entropy terms add to the stability at higher temperatures. We also carried out DFT calculations: B86bPBE?25X?XDM//B86bPBE?XDM and PBE0?XDM//PBE?XDM results overlap with the experimental ?T?S results and bracket the experimental values of ?H and ?G, displaced by only about 2× the experimental uncertainty. Revised values of the standard thermodynamic functions for diamond are ?fHo=?2150±150 J?mol?1, ?fSo=3.44±0.03 J?K?1?mol?1 and ?fGo=?3170±150 J?mol?1.
DS202110-1643
2007
Whitmeyer, S.J., Karlstrom, K.E.Tectonic model for the Proterozoic growth of North America. **** NOTE DATEGeosphere via Researchgate, Vol. 3, 4, pp. 220-259.Canada, United Statescraton

Abstract: This paper presents a plate-scale model for the Precambrian growth and evolution of the North American continent. The core of the North American continent (Canadian shield) came together in the Paleoproterozoic (2.0-1.8 Ga) by plate collisions of Archean continents (Slave with Rae-Hearne, then Rae-Hearne with Superior) as well as smaller Archean continental fragments (Wyoming, Medicine Hat, Sask, Marshfield, Nain cratons). The resulting Trans-Hudson orogen was a collisional belt similar in scale to the modern Himalayas. It contains mainly reworked Archean crust, but remnants of juvenile volcanic belts are preserved between Archean masses. The thick, buoyant, and compositionally depleted mantle lithosphere that now underlies North America, although dominantly of Archean age, took its present shape by processes of collisional orogenesis and likely has a scale of mantle heterogeneity similar to that exhibited in the overlying crust. In marked contrast, lithosphere of southern North America (much of the conti nental United States) was built by progressive addition of a series of dominantly juvenile vol canic arcs and oceanic terranes accreted along a long-lived southern (present coordinates) plate margin. Early juvenile additions (Pembine-Wausau, Elves Chasmarcs) formed at the same time (1.84-1.82 Ga) the core was assembling. Following final assembly of the Archean and Paleoproterozoic core of North America by 1.8 Ga, major accretionary provinces (defined mainly by isotopic model ages) were added by arc-continent accretion, analogous to present-day convergence between Australia and Indonesia. Also similar to Indonesia, some accreted terranes contain older continental crustal material [Archean(?) Mojavia], but the extent and geometry of older crust are not well known. Accretionary provinces are composed of numerous 10 to 100 km scale terranes or blocks, separated by shear zones, some of which had compound histories as terrane sutures and later crustal-assembly structures. Major northeast-trending provinces are the Yavapai province (1.80-1.70 Ga), welded to North America during the 1.71-1.68 Ga Yavapai orogeny; the Mazatzal province (1.70-1.65 Ga), added during the 1.65-1.60 Ga Mazatzal orogeny; the Granite-Rhyolite province (1.50-1.30 Ga), added during the 1.45-1.30 Ga tectonic event associated with A-type intracratonic magmatism; and the Llano-Grenville province (1.30-1.00 Ga), added during the 1.30-0.95 Ga broader Grenville orogeny. During each episode of addition of juvenile lithosphere, the transformation of juvenile crust into stable continental lithosphere was facilitated by voluminous granitoid plutonism that stitched new and existing orogenic boundaries. Slab roll back created transient extensional basins (1.70 and 1.65 Ga) in which Paleoproterozoic quartzite-rhyolite successions were deposited, then thrust imbricated as basins were inverted. The lithospheric collage that formed from dominantly juvenile terrane accretion and stabilization (1.8-1.0 Ga) makes up about half of the present-day North American continent. Throughout (and as a result of) this long-lived convergent cycle, mantle lithosphere below the accretionary provinces was more hydrous, fertile, and relatively weak compared to mantle lithosphere under the Archean core.
DS202108-1314
2021
Wiens, D.A.Diamonds hold clues about the cause of deep earthquakes.AGU Advances, doi.org/10.10.1029/2021AV000434, 2p. PdfMantlediamond inclusions

Abstract: The interior of the Earth at depths greater than about 70 km is entirely devoid of earthquakes, except for a few limited regions associated with current or recent subduction. The absence of earthquakes is expected, since friction along faults becomes too great for brittle failure at these pressures. The difficult question, which has been debated for decades, is what physical process allows deep earthquakes to occur in subduction environments. Now, in a recent publication in AGU Advances, Shirey et al. (2021) provide strong evidence that fluids exist in deep subduction environments, and play a crucial role in producing deep earthquakes.
DS202102-0234
2020
Wildman, M., Gallagher, K., Chew, D., Carter, A.From sink to source: using offshore thermochronometric data to extract onshore erosion signals in Namibia.Basin Research, doi.org/10.111 /bre.12527 23p. PdfAfrica, NamibiaThermochron, temperature logging

Abstract: Products of onshore passive continental margin erosion are best preserved in offshore sedimentary basins. Therefore, these basins potentially hold a recoverable record of the onshore erosion history. Here, we present apatite fission track (AFT) data for 13 samples from a borehole in the southern Walvis basin, offshore Namibia. All samples show AFT central ages older or similar to their respective stratigraphic ages, while many single grain ages are older, implying none of the samples has been totally annealed post?deposition. Furthermore, large dispersion in single grain ages in some samples suggests multiple age components related to separate source regions. Using Bayesian mixture modelling we classify single grain ages from a given sample to particular age components to create ‘subsamples’ and then jointly invert the entire dataset to obtain a thermal history. For each sample, the post?depositional thermal history is required to be the same for all age components, but each component (‘subsample’) has an independent pre?depositional thermal history. With this approach we can resolve pre? and post?depositional thermal events and identify changes in sediment provenance in response to the syn? and post?rift tectonic evolution of Namibia and southern Africa. Apatite U?Pb and compositional data obtained during the acquisition of LA?ICP?MS FT data are also presented to help track changes in provenance with time. We constrain multiple thermal events linked to the exhumation and burial history of the continental and offshore sectors of the margin over a longer timescale than has been possible using only onshore AFT thermochronological data.
DS202104-0615
2021
Williams, H.M., Matthews, S., Rizo, H., Shorttle, O.Iron isotopes trace primordial magma ocean cummulates melting in Earth's upper mantle.Science Advances, 7, (11) eabc7394 10.1126 /sciad-v.abc7394Europe, Greenlandmagmatism

Abstract: The differentiation of Earth ~4.5 billion years (Ga) ago is believed to have culminated in magma ocean crystallization, crystal-liquid separation, and the formation of mineralogically distinct mantle reservoirs. However, the magma ocean model remains difficult to validate because of the scarcity of geochemical tracers of lower mantle mineralogy. The Fe isotope compositions (?57Fe) of ancient mafic rocks can be used to reconstruct the mineralogy of their mantle source regions. We present Fe isotope data for 3.7-Ga metabasalts from the Isua Supracrustal Belt (Greenland). The ?57Fe signatures of these samples extend to values elevated relative to modern equivalents and define strong correlations with fluid-immobile trace elements and tungsten isotope anomalies (?182W). Phase equilibria models demonstrate that these features can be explained by melting of a magma ocean cumulate component in the upper mantle. Similar processes may operate today, as evidenced by the ?57Fe and ?182W heterogeneity of modern oceanic basalts.
DS202102-0235
2021
Windley, B.F., Kusky, T., Polat, A.Onset of plate tectonics by the Eoarchean.Precambrian Research, doi.org/1-.1016/ j.precamres.2020 .105980, 43p. PdfMantleplate tectonics

Abstract: One of the most contentious areas of Earth Science today is when, or whether or not modern-style plate tectonics was in operation in the Archean Eon. In this review we present evidence that the onset of plate tectonics was not at 3.2 Ga, as popularly conceived, but was in operation during the Eoarchean by at least ca. 4.0 Ga. Following a review of the main Eoarchean supracrustal belts of the world, constrained by relevant geochemical/isotopic data, we present evidence that suggests that from at least ca. 4.0 Ga Earth produced considerable juvenile mafic crust and consequent island arcs by Accretionary Cycle Plate Tectonics. From ~3.2 Ga there was a gradual transition in geodynamics to more abundant active continental margin magmatism in the form of voluminous TTGs and sanukitoids. From 3.2 Ga to 2.5 Ga juvenile oceanic crust and arcs continued to form, accompanied by more active continental margin magmatism until ~2.7-2.5 Ga, by which time there were sufficient crustal rocks to amalgamate into incipient large continents, the fragmentation of which started the first complete classical Wilson Cycle Plate Tectonics of breaking apart and re-assembling large continental masses. In other words, there were two types of plate tectonics in operation in the early Earth, Accretionary Cycle Plate Tectonics and Wilson Cycle Plate Tectonics, but Wilson Cycle type plate interactions only became more common after contiguous continental landmass became voluminous and extensive enough around 2.7-2.5 Ga. Failure to realize this dual mechanism of continental growth may lead to erroneous ideas such as "plate tectonics started at 3.2 Ga", or "mantle plumes generated early Archean magmatic rocks." We present new geochemical data that together with lithological and structural relationships, negate the various plume-type speculations including stagnant lids, heat pipes, and mushy-lid tectonics. It is interesting to consider that the way Earth’s crust developed in the first Gigayear of the geological record continued later, albeit in more advanced forms, into the Phanerozoic, where we can still recognize Accretionary Cycle Plate Tectonics and orogens still with short boundaries in examples including the Altaids of Central Asia, the Arabian-Nubian Shield, the Japanese Islands, and in incipient form in Indonesia, as well as Wilson Cycle Plate Tectonics that leads inexorably to continental collisions as in the Alpine-Himalayan orogen with its long plate boundaries. We recommend this holistic view of crustal growth and the evolution of continents that leads to a robust, viable, and testable model of Earth evolution.
DS202110-1644
2020
Wood, J.O.An elusive impurity: studying hydrogen in natural diamonds.University of Bristol , Phd. Thesis, 219p. PdfGlobalhydrogen

Abstract: Diamonds are a valuable tool for petrologists in order to study the lithospheric mantle. Diamond’s unique material properties enable it to act as a record of the conditions within the mantle from which diamonds grow, through mineral inclusions and crystallographic defects within the lattice. One impurity often observed is hydrogen, with the most common form being the N3VH centre, seen in the IR spectra of many natural diamonds. Despite its ubiquity, it is not well understood. This work initially presents an attempt at quantification of the amount of hydrogen present in natural diamonds and how it relates to the amount of N3VH. The results suggest that most hydrogen within diamonds is not contained in the N3VH defect, with the concentrations observed over 20 times higher than predicted using IR alone. High-quality IR and UV-vis line scans are then used to interrogate the effect of hydrogen on the nitrogen aggregation sequence in diamonds, specifically using the concentration of N3, a minor aggregate. This enables generation of proportionality constants within each diamond and suggests that the primary formation mechanism of N3VH is through direct protonation of N3. A methodology is laid out for studying the availability of hydrogen within diamond-forming fluids through the study of the relative abundance of N3 and N3VH within a diamond. A minor IR peak at 3236 cm-1 is also investigated through comparison with other IR features, and some evidence is found for aggregated nitrogen and platelets in the defect structure.
DS202103-0422
2021
Woodland, A.B., Graf, C., Sandner, T., Hofer, H.E., Seitz, H-M., Pearson, D.G., Kjarsgaard, B.A.Oxidation state and metasomatism of the lithospheric mantle beneath the Rae craton, Canada: strong gradients reflect craton formation and evolution.Nature Scientific Reports, 10.1038/s41598-021-83261-6 11p. PdfCanada, Northwest Territoriesmetasomatism

Abstract: We present the first oxidation state measurements for the subcontinental lithospheric mantle (SCLM) beneath the Rae craton, northern Canada, one of the largest components of the Canadian shield. In combination with major and trace element compositions for garnet and clinopyroxene, we assess the relationship between oxidation state and metasomatic overprinting. The sample suite comprises peridotite xenoliths from the central part (Pelly Bay) and the craton margin (Somerset Island) providing insights into lateral and vertical variations in lithospheric character. Our suite contains spinel, garnet-spinel and garnet peridotites, with most samples originating from 100 to 140 km depth. Within this narrow depth range we observe strong chemical gradients, including variations in oxygen fugacity (ƒO2) of over 4 log units. Both Pelly Bay and Somerset Island peridotites reveal a change in metasomatic type with depth. Observed geochemical systematics and textural evidence support the notion that Rae SCLM developed through amalgamation of different local domains, establishing chemical gradients from the start. These gradients were subsequently modified by migrating melts that drove further development of different types of metasomatic overprinting and variable oxidation at a range of length scales. This oxidation already apparent at ~?100 km depth could have locally destabilised any pre-existing diamond or graphite.
DS202110-1645
2021
Woolley, A.R.Alkaline rocks and carbonatites of the World Part 4: The Canadian Mineralogist , Vol. 59, 4, p. 797. Book listed Antarctica, Asia, Europe, Australasia, Oceanic IslandsCarbonatites

Abstract: Alkaline igneous rocks and carbonatites are compositionally and mineralogically the most diverse of all igneous rocks and, apart from their scientific interest, are of major, and growing, economic importance. They are valuable repositories of certain metals and commodities - the only significant sources of some of them - and include Nb, the rare earths, Cu, V, diamond, phosphate, vermiculite, bauxite, raw materials for the manufacture of ceramics, and potentially Th and U. The economic potential of these rocks is now widely appreciated, particularly since the commencement of the mining of the Palabora carbonatite for copper and a host of valuable by-products. Similarly, the crucial economic dominance of rare earth production from carbonatite-related occurrences in China has stimulated the world-wide hunt for related deposits. This volume describes and provides ready access to the literature for all known occurrences of alkaline igneous rocks and carbonatites of Antarctica, Asia and Europe (excluding the former USSR), Australasia and the oceanic islands. More than 1200 occurrences from 59 countries are outlined, together with those of 57 oceanic islands and island groups. The descriptions include geographical coordinates and information on general geology, rock types, petrography, mineralogy, age and economic aspects, with the principal references cited. A brief description is also given of alkaline minerals in meteorites and of alkaline rocks on Mars and Venus. There are 429 geological and distribution maps and a locality index. As has been demonstrated by the three earlier volumes, Alkaline Rocks Part 4 is likely to be of considerable interest to mineral exploration companies, as there are no comprehensive published reviews of the economic aspects of the alkaline rocks. It will also interest research scientists in the fields of igneous petrology and volcanology, and geologists concerned with the regional distribution of igneous rocks and their geodynamic relationships.
DS202108-1315
2021
Wouters, M.C., Perez-Diaz, L., Tuck-Martin, A., Eagles, G., Adam, J., Grovers, R.Dynamics of the African plate 75Ma: from plate kinematic reconstructions to interplate paleo-stresses,Tectonics, e2020TC006355Africageodynamics

Abstract: Plate reconstruction studies show that the Neotethys Ocean was closing due to the convergence of Africa and Eurasia toward the end of the Cretaceous. The period around 75 Ma reflects the onset of continental collision between the two plates as convergence continued to be taken up mostly by subduction of the Neotethys slab beneath Eurasia. The Owen transform plate boundary in the northeast accommodated the fast northward motion of the Indian plate relative to the African plate. The rest of the plate was surrounded by mid-ocean ridges. Africa was experiencing continent-wide rifting related to northeast-southwest extension. We aim to quantify the forces and paleostresses that may have driven this continental extension. We use the latest plate kinematic reconstructions in a grid search to estimate horizontal gravitational stresses (HGSs), plate boundary forces, and the plate's interaction with the asthenosphere. The contribution of dynamic topography to HGSs is based on recent mantle convection studies. We model intraplate stresses and compare them with the strain observations. The fit to observations favors models where dynamic topography amplitudes are smaller than 300 m. The results also indicate that the net pull transmitted from slab to the surface African plate was low. To put this into context, we notice that available tectonic reconstructions show fragmented subduction zones and various colliding micro-continents along the northern margin of the African plate around this time. We therefore interpret a low net pull as resulting from either a small average slab length or from the micro-continents' resistance to subduction.
DS202104-0616
2021
Wu, B., Hu, Y-Q., Bonnetti, C., Xu, C., Wang, R-C., Zhang, Z-S., Li, Z-Y., Yin, R.Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization.Ore Geology Reviews, Vol. 132, 1040459, 16p. PdfChinadeposit - Miaoya

Abstract: Carbonatite represents a major host rock for niobium (Nb) resources worldwide. Both magmatic and post-magmatic metasomatic processes are crucial for Nb mineralization in carbonatites. However, the roles of these metasomatic processes are difficult to be evaluated due to their multiple origins and complexity of the physico-chemical conditions. In this study, we present detailed mineralogical investigations of pyrochlore group minerals and chemical U-Th-Pb geochronology of uraninite within the Miaoya carbonatite complex, aiming to better characterize the role of post-magmatic metasomatic events. The Miaoya complex (ca. 420-440?Ma) hosts the second largest carbonatite-related Nb deposit in China, mainly in the form of pyrochlore group minerals, ferrocolumbite and Nb-bearing rutile. Primary pyrochlore group minerals evolved from pyrochlore to uranpyrochlore, and ultimately reaching the betafite end-member during the magmatic stage. They have then experienced an episode of metasomatic events at 235.4?±?4.1?Ma, as determined by U-Th-Pb chemical ages of secondary uraninite. Fluids activity for uranpyrochlore alteration was concomitant with the hydrothermal reworking of REE mineralization, which was probably related to tectono-thermal events that occurred during the Triassic closure of the ancient Mianlue Ocean. During this process, hydration and decomposition of uranpyrochlore were characterized by the leaching of Na, Ca and F from its structure, the incorporation of Fe, Si, Sr and Ba from the fluids, and the final in situ replacement by secondary ferrocolumbite, uraninite and Nb-bearing rutile. In addition, parts of Nb and U liberated from uranpyrochlore by metamictization were then transported over distances of several hundreds of microns in relatively reducing (Fe, Si, S, CO2)-bearing fluids under high temperature, and were ultimately re-precipitated in amorphous Fe-Si-U-Nb-bearing oxide veins and poorly crystallized Nb-Ti-Ca-Fe-rich oxides. The relatively weak fluids activity failed to efficiently promote the Nb re-enrichment.
DS202102-0236
2021
Wu, J.What might Earth's next supercontinent look like? New study provides clues. Name Amasia Gondwana +Science, doi.10.1126/ science.abg6491 1p. GlobalTectonics

Abstract: From Columbia to Rodinia to Pangaea, Earth has seen a few supercontinents come and go in its ancient past. Now, researchers theorize that these giant landmasses form in regular cycles, about once every 600 million years. They even predict when and where the next supercontinent will form, driven by the creeping flow of rocks in our planet’s hot mantle.
DS202104-0617
2021
Wu, L., Murphy, J.B., Quesada, C., Li, Z-X., Waldron, J.W.F., Williams, S., Pisarevsky, S., Collins, W.J.The amalgamation of Pangea: paleomagnetic and geological observations revisited.Geological Society of America Bulletin, Vol. 133, 3/4, pp. 625-646. pdfGlobalPangea

Abstract: The supercontinent Pangea formed by the subduction of the Iapetus and Rheic oceans between Gondwana, Laurentia, and Baltica during mid-to-late Paleozoic times. However, there remains much debate regarding how this amalgamation was achieved. Most paleogeographic models based on paleomagnetic data argue that the juxtaposition of Gondwana and Laurussia (Laurentia-Baltica) was achieved via long-lasting highly oblique convergence in the late Paleozoic. In contrast, many geology-based reconstructions suggest that the collision between the two continents was likely initiated via a Gondwanan promontory comprising the Iberian, Armorican, and Bohemian massifs, and parts of the basement units in the Alpine orogen during the Early Devonian. To help resolve this discrepancy, we present an updated compilation of high-quality paleopoles of mid-to-late Paleozoic ages (spanning Middle Ordovician and Carboniferous times) from Gondwana, Laurentia, and Baltica. These paleopoles were evaluated with the Van der Voo selection criteria, corrected for inclination error where necessary, and were used to revise their apparent polar wander (APW) paths. The revised APW paths were constructed using an innovative approach in which age errors, A95 ovals, and Q-factors of individual paleopoles are taken into account. By combining the resulting APW paths with existing geological data and field relationships in the European Variscides, we provide mid-to-late Paleozoic paleogeographic reconstructions which indicate that the formation of Pangea was likely initiated at 400 Ma via the collision between Laurussia and a ribbon-like Gondwanan promontory that was itself formed by a scissor-like opening of the Paleotethys Ocean, and that the amalgamation culminated in the mostly orthogonal convergence between Gondwana and Laurussia.
DS202105-0799
2020
Wu, W., Yang, J., Zheng, J., Lian, D., Qiu, T.Origin of the diamonds within chromitite from the Mirdita ophiolite ( Albania) and its geological significance. Acta Geologica Sinica, Vol. 94, 1, pp. 64-65.Europe, Albaniadeposit - Mirdita

Abstract: Geophysical investigations and laboratory experiments show evidence for possible subduction of ancient oceanic crust. Geological and mineralogical observations suggest that subducted oceanic crust is recycled into the upper mantle. The subduction is supported by the recovery of super?deep diamonds from kimberlites and the presence of crustal materials in ophiolitic chromitites and their host peridotites. What is the mechanism? Here we report the new discovery of ophiolite?hosted diamonds in the podiform chromitites within the Skenderbeu massif from the Mirdita ophiolite in the western part of Neo?Tethys (Fig. 1). The diamonds are characterized by exceedingly light C isotopes (?13CPDB ? ?25‰), which can be interpreted as evidence for subduction of organic carbon from Earth's surface. The diamonds are also characterized by an exceptionally large range in ?15Nair (?12.9‰ to +25.5‰), accompanied by a low N aggregation state (Fig. 2). On the other hand, materials sparsely included in diamonds include amorphous material, Ni?Mn?Co alloy, nanocrystals (20 nm×20 nm) of calcium silicate with an orthorhombic perovskite structure (Ca?Pv), and fluids (Fig. 3). We consider that the Skenderbeu diamonds nucleated and grew from a C?saturated, NiMnCo?rich melt derived from a subducted slab of ocean crust and lithosphere in the deep mantle environment. The environment is in the diamond stability field or near the top of the mantle transition zone. The new discovery of diamonds from the Mirdita ophiolite provides a valuable opportunity to understand deep cycling of subducted oceanic crust and mantle (i.e., composition and process).
DS202109-1495
2021
Xu, C., Inoue, T., Kakizawa, S., Noda, M., Gao, J.Effect of Al on the stability of dense hydrous magnesium silicate phases to the uppermost lower mantle: implications for water transportation into the deep mantle.Physics and Chemistry of Minerals, Vol. 48, 31, 10p. PdfMantlewater

Abstract: We have systematically investigated the high-pressure and high-temperature stability of Al-bearing dense hydrous magnesium silicate phases (DHMSs) in natural chlorite compositions containing?~?16 wt% H2O and?~?14 wt% Al2O3 between 14 and 25 GPa at 800-1600 °C by an MA8-type multi-anvil apparatus. A chemical mixture similar to Fe-free chlorite was also investigated for comparison. Following the pressure-temperature (P-T) path of cold subduction, the phase assemblage of phase E?+?phase D is stable at 14-25 GPa. Superhydrous phase B is observed between 16 and 22 GPa coexisting with phase E?+?phase D. Following the P-T path of hot subduction, the phase assemblage of phase E?+?garnet is identified at 14-18 GPa coexisting with the melt. The phase assemblage of superhydrous phase B?+?phase D was found at 18-25 GPa, which is expected to survive at higher P-T conditions. We have confirmed that the presence of Al could enhance the stability of DHMSs. Our results indicate that, after chlorite decomposition at the shallow region of the subduction zone, the wide stability field of Al-bearing DHMSs can increase the possibility of water transportation into the deep lower mantle.
DS202111-1792
2021
Xu, C., Kakizawa, S., Greaux, S., Inoue, T., Li, Y., Gao, J.Al partitioning between phase D and bridgmanite at the uppermost lower mantle.Physics and Chemistry of Minerals, Vol. 48, 10, 6p. Pdf s00269-021-Q1163-5Mantlebridgmanite

Abstract: Phase D is proposed to be the most important hydrous phase at the upper part of the lower mantle, and it has been shown to coexist with bridgmanite (Brg), the most abundant mineral and main host for Al2O3 in the lower mantle. The concentration of Al in Phase D could significantly increase the thermal stability field of Phase D, therefore, partitioning of Al between Brg and Phase D is of particular importance to constrain water distribution in the deep mantle. Here, we performed high P-T experiments in MgO-Al2O3-SiO2-H2O system to investigate the partitioning of Al between Brg and Phase D up to 32 GPa and 1350 °C. Our results indicated that Al distributes strongly into Phase D relative to Brg and the partition coefficient slightly decreases with increasing temperature. Al-bearing Phase D exhibits a very high thermal stability region, but it completely decomposed around 28 GPa and 1350 °C, at which point Brg coexisted with a large amount of melt. The depth?~?850 km (28 GPa) is thus proposed to be the second choke point for hydrous minerals. This may shed new lights on several important geophysical observations in subduction zones.
DS202112-1957
2021
Xu, J-Y., Giuliani, A., Li, Q-L., Lu, K., Melgarejo, J.C., Griffin, W.L.Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material.Nature Communications, 10.10.1038/s4167-021-266668-z 14p. PdfMantleolivine

Abstract: Oxygen isotope ratios in mantle-derived magmas that differ from typical mantle values are generally attributed to crustal contamination, deeply subducted crustal material in the mantle source or primordial heterogeneities. Here we provide an alternative view for the origin of light oxygen-isotope signatures in mantle-derived magmas using kimberlites, carbonate-rich magmas that assimilate mantle debris during ascent. Olivine grains in kimberlites are commonly zoned between a mantle-derived core and a magmatic rim, thus constraining the compositions of both mantle wall-rocks and melt phase. Secondary ion mass spectrometry (SIMS) analyses of olivine in worldwide kimberlites show a remarkable correlation between mean oxygen-isotope compositions of cores and rims from mantle-like 18O/16O to lower ‘crustal’ values. This observation indicates that kimberlites entraining low-18O/16O olivine xenocrysts are modified by assimilation of low-18O/16O sub-continental lithospheric mantle material. Interaction with geochemically-enriched domains of the sub-continental lithospheric mantle can therefore be an important source of apparently ‘crustal’ signatures in mantle-derived magmas.
DS202104-0618
2020
Xu, M., Jing, Z., Bajgain, S.K., Mookherjee, M., Van Orman, J.A., Yu, T., Wang, Y.High pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle.Proceedings of the National Academy of Sciences PNAS, Vol. 117, 31, pp. 18285-18291. pdfMantlemelting

Abstract: Deeply subducted carbonates likely cause low-degree melting of the upper mantle and thus play an important role in the deep carbon cycle. However, direct seismic detection of carbonate-induced partial melts in the Earth’s interior is hindered by our poor knowledge on the elastic properties of carbonate melts. Here we report the first experimentally determined sound velocity and density data on dolomite melt up to 5.9 GPa and 2046 K by in-situ ultrasonic and sink-float techniques, respectively, as well as first-principles molecular dynamics simulations of dolomite melt up to 16 GPa and 3000 K. Using our new elasticity data, the calculated VP/VS ratio of the deep upper mantle (?180-330 km) with a small amount of carbonate-rich melt provides a natural explanation for the elevated VP/VS ratio of the upper mantle from global seismic observations, supporting the pervasive presence of a low-degree carbonate-rich partial melt (?0.05%) that is consistent with the volatile-induced or redox-regulated initial melting in the upper mantle as argued by petrologic studies. This carbonate-rich partial melt region implies a global average carbon (C) concentration of 80-140 ppm. by weight in the deep upper mantle source region, consistent with the mantle carbon content determined from geochemical studies.
DS202102-0237
2021
Yakmchuck, C., Kirkland, C.L., Cavosie, A.J., Szilas, K., Hollis, J., Gardinerm N.J., Waterton, P., Steenfelt, A., Martin, L.Stirred not shaken; critical evaluation of a proposed Archean meteorite impact in West Greenland.Earth and Planetary Science Letters, Vol. 557, doi.org/10.1016/ j.epsl.2020.116730 9p. PdfEurope, Greenlandmeteorite

Abstract: Large meteorite impacts have a profound effect on the Earth's geosphere, atmosphere, hydrosphere and biosphere. It is widely accepted that the early Earth was subject to intense bombardment from 4.5 to 3.8 Ga, yet evidence for subsequent bolide impacts during the Archean Eon (4.0 to 2.5 Ga) is sparse. However, understanding the timing and magnitude of these early events is important, as they may have triggered significant change points to global geochemical cycles. The Maniitsoq region of southern West Greenland has been proposed to record a ?3.0 Ga meteorite impact, which, if confirmed, would be the oldest and only known impact structure to have survived from the Archean. Such an ancient structure would provide the first insight into the style, setting, and possible environmental effects of impact bombardment continuing into the late Archean. Here, using field mapping, geochronology, isotope geochemistry, and electron backscatter diffraction mapping of 5,587 zircon grains from the Maniitsoq region (rock and fluvial sediment samples), we test the hypothesis that the Maniitsoq structure represents Earth's earliest known impact structure. Our comprehensive survey shows that previously proposed impact-related geological features, ranging from microscopic structures at the mineral scale to macroscopic structures at the terrane scale, as well as the age and geochemistry of the rocks in the Maniitsoq region, can be explained through endogenic (non-impact) processes. Despite the higher impact flux, intact craters from the Archean Eon remain elusive on Earth.
DS202111-1793
2021
Yakovlev, E., Puchkov, A.Radon over kimberlite pipes: estimation of the emanation properties of rocks ( Lomonosov diamond deposit, NW Russia).MDPI Applied Sciences, Vol. 11, 6065, 22p. PdfRussia, Arkangelskdeposit - Lomonosov

Abstract: In this paper, using the example of the Lomonosov diamond deposit, experimental studies of rocks were carried out to assess the main radiation and physical factors affecting the formation of the radon field over the kimberlite pipes of the Arkhangelsk diamondiferous province. For various types of rocks, represented by vent kimberlites, tuffaceous-sedimentary rocks of the crater and enclosing and overlying sediments, the following were studied: porosity, density, activity of radium-226, activity of radon in a free state, level of radon production, and emanation coefficient. The research results showed that the greatest amount of radon in a free state is produced by rocks of the near-pipe space, represented by the enclosing Vendian V2 deposits and characterized by high values of the emanation coefficient, radium activity, radon production level and porosity. This fact is associated with the structural and geological features of the near-pipe space, which was exposed to the impact of kimberlite magma on the host rocks. The lowest values of these parameters are characteristic of the kimberlites of the vent facies, which limits the formation of free radon in the body of the pipe. The results of the experimental studies create prospects for the development of emanation methods for searching for kimberlite pipes in the conditions of the Arkhangelsk diamondiferous province.
DS202105-0800
2020
Yang, J.. Dongyang. L., Robinson, P.T., Qiu, T. , Xiong, F., Wu, W.Geological evidence does not support a shallow origin for diamonds in ophiolite.Acta Geologica Sinica, Vol. 94, 1, pp. 70-72.Europe, Albaniaophiolite

Abstract: Farré?de?Pablo et al. (2018) report a new occurrence of in situ microdiamonds enclosed in chromite from ophiolitic chromitite pods hosted in the Tehuitzingo serpentinite of southern Mexico. The discovery enlarges the number of occurrence of the ophiolite?hosted microdiamonds to 7 countries in the world, including India (Das, 2015, 2017), Albania (Xiong et al., 2017; Wu et al., 2017), Turkey (Lian et al., 2017), Myanmar (Chen et al., 2018), Russia (Yang et al., 2015), and China (Bai et al., 1993; Xu et al., 2009). The microdiamonds occur in ophiolitic podiform chromitites and peridotites, and are generally interpreted as UHP phases formed at pressures > 4 GPa (Yang et al., 2014; Griffin et al., 2016; Das et al., 2017). However, Farré?de?Pablo et al. (2018) conclude that the Tehuitzingo diamonds were formed under low?temperature and low?pressure conditions during serpentinization, which challenges the current knowledge of diamond formation. Here, we discuss several lines of evidence that do not support the authors' conclusion.
DS202105-0801
2021
Yoshida, M., Yoshizawa, K.Continental drift with deep cratonic roots.Annual Review of Earth Planetary Sciences, Vol. 49, pp. 117-139.Mantletectonics

Abstract: The influence of the continental lithosphere and its root (or keel) on the continental drift of Earth is a key element in the history of plate tectonics. Previous geodynamic studies of mantle flow suggested that the cratonic root is moderately mechanically coupled with the underlying mantle, and stable continental drift on Earth's timescales occurs when the effective viscosity contrast between the continental lithosphere and the underlying mantle is approximately 103. Both geodynamics and seismological studies indicate that mechanically weak mobile belts (i.e., orogenic or suture zones) that surround cratons may play a role in the longevity of the cratonic lithosphere over geologically long timescales (i.e., over 1,000 million years) because they act as a buffer region against the high-viscosity cratons. Low-viscosity asthenosphere, characterized by slow seismic velocities, reduces the basal drag force acting on the cratonic root, which may also contribute to the longevity of the cratonic lithosphere.
DS202107-1146
2021
Yoshida, M., Yoshizawa, K.Continental drift with deep cratonic roots.Annual Review of Earth and Planetary Sciences, Vol. 49, pp. 117-139.Mantlecratons

Abstract: The influence of the continental lithosphere and its root (or keel) on the continental drift of Earth is a key element in the history of plate tectonics. Previous geodynamic studies of mantle flow suggested that the cratonic root is moderately mechanically coupled with the underlying mantle, and stable continental drift on Earth's timescales occurs when the effective viscosity contrast between the continental lithosphere and the underlying mantle is approximately 103. Both geodynamics and seismological studies indicate that mechanically weak mobile belts (i.e., orogenic or suture zones) that surround cratons may play a role in the longevity of the cratonic lithosphere over geologically long timescales (i.e., over 1,000 million years) because they act as a buffer region against the high-viscosity cratons. Low-viscosity asthenosphere, characterized by slow seismic velocities, reduces the basal drag force acting on the cratonic root, which may also contribute to the longevity of the cratonic lithosphere. The role of the continental lithosphere and its root on the continental drift is reviewed from recent geodynamic and seismological studies. The cratonic root is moderately mechanically coupled with the underlying mantle and deformed by mantle flow over geological timescales. Orogenic belts or suture zones that surround cratons act as a buffer to protect cratons and are essential for their longevity. Low-viscosity asthenosphere may reduce the basal drag acting on the cratonic root and also contribute to its stability and longevity.
DS202105-0802
2021
Yu, Y., Huang, X-L., Sun, M., Ma, J-L.B isotopic constraints on the role of H2O in mantle wedge melting.Geochimica et Cosmochimica Acta, Vol. 303, pp. 92-109, pdfMantlemelting

Abstract: The role of water on melting in the mantle wedge is still debated due to large uncertainty on the estimates of H2O flux beneath arcs. B has been proven as an effective proxy for water flux because B and H2O show similar chemical behaviors during subduction. The Habahe mafic dikes from the Chinese Altai were emplaced within a narrow area (<20?km from south to north) during the northward subduction of the Junggar Ocean in the middle Paleozoic. These dikes have been classified into four types with distinct geochemical and Sr-Nd-Hf-Pb isotopic compositions, which originated from mantle sources metasomatized by different subduction components, including melts from subducted sediments (Type-I, Type-IV), fluids from subducted sediments (Type-II), and melts from subducted oceanic crust (Type-III). We present B content and isotope data for the Habahe mafic dikes to investigate the influence of subduction components on melting in the mantle wedge. Type-I and -III mafic dikes all have negative ?11B values (?7.7‰ to ?5.0‰) with variable B contents (3.65-13.4?ppm) and B/Nb ratios (2.10-7.39), indicating B isotopically light features for the subducted sediments and oceanic crust. Type-II mafic dikes have lower B contents (3.97-9.90?ppm) and higher B/Nb ratios (7.07-14.4) than Type-I mafic dikes, with a wide range of ?11B values from ?7.8‰ to ?2.7‰. This suggests that their mantle source may have been metasomatized by fluids from subducted serpentinite besides fluids from subducted sediments. Type-IV mafic dikes have higher B contents (17.0-27.5?ppm) and B/Nb ratios (25.0-40.8), and heavier B isotopic compositions (?11B?=??2.9‰ to +3.5‰) than Type-I mafic dikes. This indicates involvement of fluids from the slab serpentinite in metasomatism of their mantle source in addition to melts from the subducted sediments. The Habahe mafic dikes show wide range of B/Nb ratios, suggesting that different amounts of water were added into their mantle sources. These dikes exhibit variable Zr/Yb and Nb/Yb ratios, and constantly low TiO2/Yb, indicating their formation through different degrees melting of depleted mantle sources. Their Zr/Yb and Nb/Yb ratios are negatively correlated with B/Nb, which reflects elevation of the melting degree of their mantle sources as increasing water input. Similar trends are also observed in basalts from global arcs and their major and trace elements correlate well with B/Nb ratios. Thus, water flux should play an important role on melting in the mantle wedge and control magma compositions of the arcs.
DS202103-0423
2021
Zaitsev, A.M., Kazuchits, N.M., Moe, K.S., Butler, J.E., Korolik, O.V., Rusetsky, M.S., Kazuchits, V.Luminescence of brown CVD diamond: 468 nm luminescence center.Diamond & Related Materials, Vol. 113, 108255, 7p. PdfGloballuminescence

Abstract: Detailed study of the luminescence of multiple brown CVD diamonds was performed. It has been found that the well-known optical center with zero-phonon line at 468 nm is a characteristic of brown color. It has been found that the defects responsible for 468 nm center are located within brown striations suggesting close relation of the 468 nm center and the vacancy clusters. Simultaneous reduction of the intensity of 468 nm center and brown color during annealing support the assumption of their close relation. Identical spectroscopic parameters of the 468 nm center and the radiation center with ZPL at 492 nm suggest that the former relates to an intrinsic defect probably containing vacancies. The distribution of intensity of the 468 nm center in some brown diamonds follows the distribution of the NV? center while being opposite to that of the NV0 center and the dislocation-related A-band. This observation suggests the negative charge state of the 468 nm center. Due to its high luminescence efficiency, the 468 nm center can be used as a highly sensitive indicator of the traces of vacancy clusters. We found that the 468 nm center is detected practically in every as-grown CVD diamond including colorless CVD diamonds of high structural perfection and high purity.
DS202104-0619
2021
Zaitsev, A.N., Spratt, J., Shtukenberg, A.G., Zolotarev, A.A., Britvin, S.N., Petrov, S.V., Kuptsova, A.V., Antonov, A.V.Oscillatory- and sector zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania.Mineralogical Magazine, Vol. Pp. 1-22. pdfAfrica, Tanzaniacarbonatite

Abstract: The Quaternary carbonatite-nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 ?m in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.
DS202109-1496
2021
Zaitsev, A.N., Spratt, J., Shtukenberg, A.G., Zolotarev, A.A., Britvin, S.N., Petrov, S.V., Kuptsova, A.V., Antonov, A.V.Oscillatory- and select-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory Rift, Tanzania.Mineralogical Magazine, Vol. 85, 4, pp. 532-553.Africa, Tanzaniadeposit - Kerimasi

Abstract: The Quaternary carbonatite-nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 ?m in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.
DS202102-0238
2020
Zayakina, N., Ugapeva, S., Oleinikov, O.Rare hydrated magnesium carbonate minerals of the kimberlite pipe Obnazhennaya, the Yakutian kimberlite province.6th World Multidisciplenary Earth Sciences Symposium IOP Publ., 9p. PdfRussiadeposit - Obnazhennaya

Abstract: The first discovery of hydrated magnesium carbonates, dypingite and nesquehonite, in the kimberlite pipe Obnazhennaya of the Kuoyka field, the Yakutian kimberlite province is described. The pipe is composed of kimberlite breccia with abundant diverse xenoliths of practically intact mantle rocks. Olivine in phenocrysts and mantle rock is generally intact. The main body of the rock is carbonate-serpentine. Nesquehonite and dypingite are rare minerals and have first been observed in relation to kimberlites. The minerals were found in the bedrock outcrop of the Obnazhennaya pipe as white crusts up to 5 mm thick scattered over an area of a few tens of square meters. To identify and study the crusts we used the following methods: powder X-ray diffraction, electron microscopy, and Raman scattering spectroscopy. A comprehensive study suggests that the main minerals of these epigenetic formations are hydrated carbonates: nesquehonite MgCO3squ3H2O and dypingite Mg5(CO3)4(OH)2squ5H2O. Also, Raman scattering spectroscopy revealed a small proportion of hydromagnesite Mg5(CO3)4(OH)2squ4H2O. Hydrated magnesium carbonate minerals we found make a significant contribution to the collection of kimberlites. They are epigenetic in nature, with their origin being related to weathering of silicates, in particular serpentine. Mechanisms of carbonate formation appear to be close to that suggested by Wilson et. al., 2009, with CO2 being trapped from the atmosphere to form nesquehonite. In the case of the Obnazhennaya pipe, mineral solutions form when rainwater filters through the talus at the top of the outcrop. They are enriched in Mg from minerals and trap CO2 from the atmosphere. After filtering, solutions reach the vertical wall of kimberlite breccia where modern precipitation of nesquehonite upon evaporation occurs. Further, dypingite and hydromagnesite form via decomposition of nesquehonite. A lip extending over the rock wall significantly contributes to the development and stability of nesquehonite and dypingite aggregates. Crusts of nesquehonite and dypingite are not found on rock outcrops without lips at the top. Thus, despite the fact that intrusion of the kimberlite pipe occurred during the Jurassic (Zaitsev, Smelov, 2010), formation of nesquehonite and dypingite in association with kimberlite rocks continues in the modern time due to favorable environmental factors, first of all, a unique natural outcrop of kimberlite.
DS202103-0424
2021
Zeng, C., Shen, J., Zhang, J.High thermal conductivity in indium-based metal/diamond composites by good wettability of diamond with indium.Diamond & Related Materials, Vol. 112, 108230, 10p. PdfGlobalmarkets for miniturization

Abstract: Low melting point metal (LMPM) has potential application value in the field of thermal management. Indium-based LMPM/diamond composites were manufactured using sintering technique. The thermal conductivity of Bi-In-Sn/diamond composites was improved by pre-adding indium particles fabricated using slice technique. Using in-situ imaging and particle dipping experiment, the wetting behavior of diamond microparticle with pure indium, indium-based and gallium-based liquid metal (LM) was investigated. The diamond microparticle was well wetted by molten indium. The wettability of diamond with gallium can be improved by alloying gallium with indium. Oxide film of LM would hinder the wetting of LM on diamond. The highest thermal conductivity of Bi-In-Sn/diamond composites and indium/diamond composites obtained in this work was up to 157 W m?1 K?1 and 211 W m?1 K?1, respectively.
DS202104-0620
2021
Zeug, M., Nasdala, L., Ende, M., Habler, G., Hauzenbergerm C., Chanmuang, C.N., Skoda, R., Topa, D., Wildner, M., Wirth, R.The parisite-(De) enigma: challenges in the identification of fluorcarbonate minerals. REEMineralogy and Petrology, Vol 115, pp. 1-19. pdfSouth America, Columbiadeposit - La Pita

Abstract: A multi-methodological study was conducted in order to provide further insight into the structural and compositional complexity of rare earth element (REE) fluorcarbonates, with particular attention to their correct assignment to a mineral species. Polycrystals from La Pita Mine, Municipality de Maripí, Boyacá Department, Colombia, show syntaxic intergrowth of parisite-(Ce) with röntgenite-(Ce) and a phase which is assigned to B3S4 (i.e., bastnäsite-3-synchisite-4; still unnamed) fluorcarbonate. Transmission electron microscope (TEM) images reveal well-ordered stacking patterns of two monoclinic polytypes of parisite-(Ce) as well as heavily disordered layer sequences with varying lattice fringe spacings. The crystal structure refinement from single crystal X-ray diffraction data - impeded by twinning, complex stacking patterns, sequential and compositional faults - indicates that the dominant parisite-(Ce) polytype M1 has space group Cc. Parisite-(Ce), the B3S4 phase and röntgenite-(Ce) show different BSE intensities from high to low. Raman spectroscopic analyses of parisite-(Ce), the B3S4 phase and röntgenite-(Ce) reveal different intensity ratios of the three symmetric CO3 stretching bands at around 1100 cm-1. We propose to non-destructively differentiate parisite-(Ce) and röntgenite-(Ce) by their 1092 cm-1 / 1081 cm-1 ?1(CO3) band height ratio.
DS202102-0239
2021
Zeug, M., Nasdala. L., Ende, M., Habler, G., Hauzenberger, C., Chanmuang, C., Skoda, R., Topa, D., Wildner, M., Wirth, R.The parisite - (Ce) enigma: challenges in the identification of fluorcarbonate minerals ( Bastanite)Mineralogy and Petrology, Vol. 115, 19p. Doi.org/101007 /s00710-020- 00723-x pdfSouth America, ColombiaREE

Abstract: A multi-methodological study was conducted in order to provide further insight into the structural and compositional complexity of rare earth element (REE) fluorcarbonates, with particular attention to their correct assignment to a mineral species. Polycrystals from La Pita Mine, Municipality de Maripí, Boyacá Department, Colombia, show syntaxic intergrowth of parisite-(Ce) with röntgenite-(Ce) and a phase which is assigned to B3S4 (i.e., bastnäsite-3-synchisite-4; still unnamed) fluorcarbonate. Transmission electron microscope (TEM) images reveal well-ordered stacking patterns of two monoclinic polytypes of parisite-(Ce) as well as heavily disordered layer sequences with varying lattice fringe spacings. The crystal structure refinement from single crystal X-ray diffraction data - impeded by twinning, complex stacking patterns, sequential and compositional faults - indicates that the dominant parisite-(Ce) polytype M1 has space group Cc. Parisite-(Ce), the B3S4 phase and röntgenite-(Ce) show different BSE intensities from high to low. Raman spectroscopic analyses of parisite-(Ce), the B3S4 phase and röntgenite-(Ce) reveal different intensity ratios of the three symmetric CO3 stretching bands at around 1100 cm?1. We propose to non-destructively differentiate parisite-(Ce) and röntgenite-(Ce) by their 1092 cm?1 / 1081 cm?1 ?1(CO3) band height ratio.
DS202101-0044
2021
Zhang, M., Wang, C., Zhang, Qi., Qin, Y., Shen, J., Hu, X., Zhou, G., Li, S.Temporal-spatial analysis of alkaline rocks based in GEOROC. Not specific to diamondsApplied Geochemistry, Vol. 124, 104853 8p. PdfAsia, TibetGEOROC
DS202107-1147
2021
Zhang, W., Chen, H-K, Li, J-H., Chen, W.T., Zhang, X-C.Composition of ore-forming fluids in the Huangshuian carbonatite-related Mo-(REE) deposit: insights from LA-ICP-MS analyses of fluid inclusions.Ore Geology Reviews, doi.org/10.1016/j.oregeorev.2021.104284 11p. PdfChinaREE

Abstract: The carbonatites in the southern margin of the North China Craton are distinguishable by containing abundant quartz and are closely spatially associated with Mo-(REE) deposits. Unveiling the nature of ore-forming fluids is key to understand the genesis of these Mo-(REE) deposits and to explore their potential genetic relationships with the quartz-rich carbonatites, but such issues were currently not convincingly addressed. Here, we provide detailed petrographic, microthermometric and LA-ICP-MS analyses of the fluid inclusions hosted in the primary quartz from the carbonatites in the Huangshuian Mo-(REE) deposit which is the largest Mo-(REE) one in the region, containing 0.4 million tons of Mo metal with REEs as the major by-product. Our results show that the fluid inclusions in the quartz of the carbonatites are two- and three-phase CO2-bearing types with high homogenization temperatures (average at 396 °C) and low salinities (average at 3.88 wt% NaCl equiv). The LA-ICP-MS analyses of these inclusions reveal that the primary fluids contain high concentrations of La, Ce, Pr, Nd, Sr, and Ba, similar to typical carbonatite-related fluids. In addition, they are characterized by high Y, Cu, Pb, and Zn. Such a metal association is broadly consistent with the mineral assemblages of the Huangshuian Mo-(REE) deposit, such as the widespread barite, bastnäsite, xenotime, chalcopyrite, galena, and sphalerite, strongly supporting the close genetic relation of the deposit with the quartz-rich carbonatites. Although the concentrations of Mo are extremely low in these inclusions (below the detect limit), it was constrained to be gradually enriched in evolved fluids. Considering that the recorded fluids in quartz represent earliest generation of fluids exsolved from carbonatite magmas, our new results highlight that quantifying metal budgets of fluid inclusions could be a robust way to evaluate fertility of carbonatites that are widespread in the southern margin of the North China Craton.
DS202103-0425
2021
Zheng, X., Liu, Y., Zhang, L.The role of sulfate-, alkali-, and halogen-rich fluids in mobilization and mineralization of rare earth elements: insights from bulk fluid compositions in the Mianning-Dechang carbonatite-related REE belt, southwestern China.Lithos, Vol. 386-387, 106008, 15p. PdfChinadeposit - Mianning-Dechang

Abstract: Carbonatites host the world's most important rare earth element (REE) resources. The origins of REE mineralization in carbonatite-related deposits, particularly the role of hydrothermal fluids in REE mobilization and mineralization, remain enigmatic. The Cenozoic Mianning-Dechang REE belt in eastern Tibet is one of the largest REE production regions worldwide, and is an ideal area for investigating REE mineralization. Geological investigations and fluid inclusion studies suggest that ore fluids in this belt evolved from hydrothermal stage I (fenitization at high temperatures of ~480 °C) to hydrothermal stage II (calcite, quartz, barite, and fluorite crystallization at temperatures of 300-350 °C and salinities of ~20 wt% NaCl equiv.), and then to the REE mineralization stage (temperatures of ~200 °C and low salinities of ~9 wt% NaCl equiv.). The bulk fluid compositions demonstrate that the ore fluids contained significant amounts of alkalis (up to 5 wt% Na + K), halogens (up to 12 wt% Cl; up to 7 wt% F), sulfate (>2 wt% SO42?), Ba (>1123 ppm), Sr (>1120 ppm), and REEs (>5 wt%). Chondrite-normalized REE patterns of these fluids are light REE-enriched and exhibit moderate depletion in Eu ([Eu/Eu?]CN = 0.85 ± 0.08), similar to the carbonatites and nordmarkites. These fluid characteristics and plots of Rb/Na vs. K/Na and Mn vs. Na suggest that the ore fluids in the Mianning-Dechang REE belt were derived from a late-stage alkaline-carbonatitic magma. High concentrations of Cl?, F?, SO42?, and REEs, and the absence of REE fluoride (REEF3) and fluorite (CaF2), suggest that the ore fluids in hydrothermal stage I were a high-temperature, SO42?-rich (>2 wt%), and acidic fluid system (pH < 3.5). In this system, chloride REE complexes were predominant over fluoride and sulfate REE complexes, which resulted in efficient transport of REEs. Sulfate species were predominant in hydrothermal stage II at temperatures of 260-350 °C and a pH between 3.5 and 5.2. The higher pH and fluid cooling from hydrothermal stage I to hydrothermal stage II caused an increase in F?, which in turn lowered fluid REE concentrations, owing to the formation of REE-rich fluorite. This suggests that F? was a depositional ligand in hydrothermal stage II. Continued fluid cooling (~200 °C) and increasing pH (~6), combined with the precipitation of barite and fluorite in the REE mineralization stage, destabilized the REE complexes because of the decreasing concentrations of SO42?, Cl?, and F?, which thus led to widespread REE deposition. A review of different-sized deposits in the Mianning-Dechang REE belt indicates that appreciable amounts of SO42?, Cl?, REEs, CO2, and particularly F? and alkalis in fluids, along with a high fluid exsolution temperature, represent the ideal conditions for potential REE mineralization in a carbonatite-related setting.
DS202110-1646
2021
Zheng, Y., Li, C., Liu, J., Wei, J., Ye, H.Diamond with nitrogen: states, control, and applications.Functional Diamond, Vol. 1, 1, pp. 63-82. doi.org/10.1080/ 26941112.2021.1877021Globalnitrogen

Abstract: The burgeoning multi-field applications of diamond concurrently bring up a foremost consideration associated with nitrogen. Ubiquitous nitrogen in both natural and artificial diamond in most cases as disruptive impurity is undesirable for diamond material properties, eg deterioration in electrical performance. However, the feat of this most common element-nitrogen, can change diamond growth evolution, endow diamond fancy colors and even give quantum technology a solid boost. This perspective reviews the understanding and progress of nitrogen in diamond including natural occurring gemstones and their synthetic counterparts formed by high temperature high pressure (HPHT) and chemical vapor deposition (CVD) methods. The review paper covers a variety of topics ranging from the basis of physical state of nitrogen and its related defects as well as the resulting effects in diamond (including nitrogen termination on diamond surface), to precise control of nitrogen incorporation associated with selective post-treatments and finally to the practical utilization. Among the multitudinous potential nitrogen related centers, the nitrogen-vacancy (NV) defects in diamond have attracted particular interest and are still ceaselessly drawing extensive attentions for quantum frontiers advance.
DS202103-0426
2021
Zhou, L., Chai, C., Zhang, W., Song, Y., Zhang, Z., Yang, Y.oI20-carbon: a new superhard carbon allotrope.Diamond & Related Materials, Vol. 113, 108284, 8p. PdfGlobalcarbon

Abstract: A new orthorhombic carbon crystal denoted oI20?carbon possessing the Immm space group was designed. Its structure is formed by stacking of a cage structure, which consists of 32 carbon atoms. Its stability and structural, mechanical and electronic properties were investigated by first-principles simulations. Density functional theory calculations show that this new carbon allotrope is thermodynamically stable (even more stable than synthesized T?carbon and supercubane). Ab initio molecular dynamics (AIMD) simulations show that it can maintain the structure above a temperature of 1000 K, indicating its excellent thermal stability. oI20?carbon can also maintain dynamic stability under a high pressure of 100 GPa. It is an anisotropic superhard material with a Vickers hardness of 46.62 GPa. Notably, the cage structure gives it a low density, which has a really small value among superhard carbon allotropes. In addition, it is worth noting that oI20?carbon has an indirect ultrawide band structure with a bandgap of 4.55 eV (HSE06), which is higher than that of most previously reported superhard carbon allotropes. All these outstanding properties show that it is a potential material for high-temperature, high-frequency electronic devices and the aerospace industry.
DS202110-1647
2021
Zhu, H., Ionov, D.A., Du, L., Zhang, Z., Sun, W.Ca-Sr isotope and chemical evidence for distinct sources of carbonatite and silicate mantle metasomatism.Geochimica et Cosmochimica Acta, Vol. 312, pp. 158-179. pdfEurope, Norwaydeposit - Spitzbergen

Abstract: Enrichments in light REE without concomitant enrichments in high-field-strength elements in mantle peridotites are usually attributed to inputs from carbonate-rich melts and referred to as ‘carbonatite’ metasomatism as opposed to interaction with evolved silicate melts. Alternatively, both enrichment types are ascribed to percolating volatile-bearing mafic liquids whose chemical signatures evolve from ‘silicate’ to ‘carbonatite’. Here we compare these models for peridotites in which these enrichment types are combined, as may be common in the mantle. We report new Ca-Sr-Nd isotope and chemical data for lherzolite and harzburgite xenoliths from Spitsbergen that were metasomatized, first, by silicate, then by carbonate-rich melts that formed carbonate-bearing pockets replacing earlier minerals. Seven crushed samples were treated with acetic acid that dissolved carbonates formed in the latest event, but not silicates. The leachates (acid-removed carbonates making up 0.6-1.4% of total sample mass) contain much more Sr than the residues after leaching (277-2923 vs. 16-60 ppm), have a greater overall 87Sr/86Sr range (0.7049-0.7141 vs. 0.7036-0.7055) and higher 87Sr/86Sr in each sample than the residues. The leachates have lower ?44/40Ca range (0.17-0.68‰) than the residues (0.78-1.00‰), as well as lower ?44/40Ca than the residues in all samples but one. By and large, the carbonates are out of Ca-Sr isotope equilibrium with the host peridotites implying that the older silicate and younger carbonatite metasomatism were produced by different parental melts, thus supporting the existence of distinctive carbonate-rich metasomatic media in the lithospheric mantle, possibly including recycled materials. The ?44/40Ca in the leachates (i.e. carbonates, 0.17-0.68‰) are well below bulk silicate Earth (BSE) estimates (0.94 ± 0.05‰) and ?44/40Ca in non-metasomatized melt-depleted mantle. Yet, ?44/40Ca in the non-leached whole rock (WR) carbonate-bearing samples (0.75-0.95‰) fall within, or are only slightly lower than, the BSE range. The 87Sr/86Sr range in these WR samples (0.7030-0.7112) includes very high values for peridotites with large aggregates of dolomite and Mg-calcite. It appears that both carbonatite and silicate metasomatism may produce ?44/40Ca values lower than the BSE such that Ca-isotope data cannot robustly tell apart these two enrichment types, yet carbonatite metasomatism may yield the lowest ?44/40Ca. Carbonates, even at small mass fractions, are significant hosts of Sr in the WR Spitsbergen peridotites (8-51 wt.% of Sr mass) because of very high Sr concentrations, but add little to WR Ca balance (3-12 wt.%). As a result, high Sr content and 87Sr/86Sr ratios may be indices (though not definitive proofs) of carbonatite metasomatism in mantle rocks.
DS202101-0045
2020
Zimmer, E.H., Howell, J.A.Predicting river mouth location from delta front dip and clinoform dip in modern and ancient wave dominated deltas. * not specific to diamondsSedimentology, doi.org/10.111/ sed.12800 24p. South America, Brazilgeomorphology

Abstract: Wave?dominated deltas and strandplains make up the majority of the world’s depositional coastlines, provide an important record of sea?level change and serve as hydrocarbon reservoirs worldwide. Satellite imagery forms a great source of data on the recent depositional history of modern deltaic systems. In the subsurface, three?dimensional seismic and well data make the three?dimensional assessment of large?scale deltaic reservoir bodies possible but struggle to resolve internal heterogeneities away from wells. To bridge this gap in characterizing deltaic sedimentation, this study combines measurements from both the shallow, high?resolution section of three?dimensional seismic data of the Eocene Halibut Delta in the Outer Moray Firth, offshore Scotland, with information from Google Earth’s satellite imagery and digital elevation model on south?east Brazilian river deltas (São Francisco, Jequitinhonha, Doce and Paraíba do Sul) to present a means of predicting the location of fluvial sediment input points with respect to clinoform geometry. The key measurement for this study is the delta front and clinoform dip which has been measured at multiple locations along strike of the coastline of the examined deltas. Dip decreases away from the inferred river mouth for all deltas by 50% within 7.2 km. The river mouth location was inferred from the position of palaeo?channels visible on the delta top and coarse sediment recorded in grab samples offshore for the south?east Brazilian deltas, and from imprints of palaeo?channels on attribute maps for the Eocene Halibut Delta. In summary, this study found that delta front dip is steepest at the location of the river mouth and decreases, along with grain size, away from it. This suggests that high dip values correlate with the proximity to the channel mouth and can be used to predict fluvial channel facies in modern deltaic systems and subsurface reservoirs.
DS202112-1958
2021
Zinchenko, V., Ashchepkov, I., Ivanov, A.Modelling of the mantle structure beneath the NE part of the Lucapa kimberlite corridor, Angola.Journal of Science, , No. 19, pp. 7-16. pdfAfrica, Angoladeposit - Lunda, Kukumbi-Kwango

Abstract: A database of microprobe EPMA and ICP MS analysis of the kimberlite indicator minerals > 20,000 of the Lunda and Kukumbi-Kwango kimberlite regions were used for construction of series PTCFO2 diagrams for mantle section beneath major kimberlite pipes the and profile through the subcontinental lithospheric mantle (SLM) beneath the NE Angolan Kasai craton within the Lucapa tectonic "corridor", which controls the kimber-lite volcanism in the North of Angola. The general construction of the mantle sections are similar for most pipes but details of the structure refer t the mineralogy and degree of the hydrous metasomatism. The vertical and lat-eral heterogeneity of the mantle in this region and the PTCFO2 parameters in mantle beneath diamond-bearing kimberlite pipes were calculated. There is the inclination of the general mantle structure toward the SW marked by the depleted layer of mantle peridotites. The local dome-like structures are found near the lithosphere base beneath Catoca, Luaxe field and other kimberlite regions. Mapping of the upper mantle beneath the Angolan Archaean cratons of is a relatively pioneer direction in the regional diamond forecasting, developed by the authors.
DS202112-1959
2021
Zubov, A.A., Shumilova, T.C., Zhuravlev, A.V., Isaenko, S.I.X-ray computed microtomography of diamondiferous impact suevitic breccia and clast poor melt rock from the Kara astrobleme ( Pay-Khoy, Russia).American Mineralogist, Vol. 106, pp. 1860-1870.Russiaastrobleme

Abstract: X-ray computed microtomography (CT) of impact rock varieties from the Kara astrobleme is used to test the method’s ability to identify the morphology and distribution of the rock components. Three types of suevitic breccias, clast-poor melt rock, and a melt clast from a suevite were studied with a spatial resolution of 24 µm to assess CT data values of 3D structure and components of the impactites. The purpose is first to reconstruct pore space, morphology, and distribution of all distinguishable crystallized melt, clastic components, and carbon products of impact metamorphism, including the impact glasses, after-coal diamonds, and other carbon phases. Second, the data are applied to analyze the morphology and distribution of aluminosilicate and sulfide components in the melt and suevitic breccias. The technical limitations of the CT measurements applied to the Kara impactites are discussed. Because of the similar chemical composition of the aluminosilicate matrix, glasses, and some lithic and crystal clasts, these components are hard to distinguish in tomograms. The carbonaceous matter has absorption characteristics close to air, so the pores and carbonaceous inclusions appear similar. However, X-ray microtomography could be used to prove the differences between the studied types of suevites from the Kara astrobleme using structural-textural features of the whole rock, porosity, and the distributions of carbonates and sulfides.
DS202108-1316
2021
Zue, R-Z., Ni, P., Wang, G-g., Ding, J-y., Kang, N.Temperature and oxygen state of kimberlite magma from the North China Craton and their implication for diamond survival.Mineralium Deposita, doi.org/10.1007/s00126-021-01057-0Chinadeposit - Wafangdian( prev Fuxian) Mengyin

Abstract: The grade and morphological character of kimberlite-hosted diamonds were compared to crystallization temperature (T) and oxygen fugacity (fO2) estimated from groundmass spinels in six kimberlite pipes in the North China Craton (NCC). Crystallization temperatures calculated at an assumed pressure of 1 GPa are in the range of 1037-1395 °C, with a mean of 1182 °C. At these temperatures, the estimated fO2 varies from 1.2 to 3.1 log units below the nickel-nickel oxide (NNO) buffer. Generally, individual kimberlite pipe shows a small variation of the T (50-100 °C) and fO2 (0.4-0.6 log units), whereas different kimberlite pipes present great changes of T and fO2 which can be up to 300 °C and 2 units respectively. The fO2 of kimberlite magma shows a strong negative correlation with the diamond grade of kimberlite, suggesting that the fO2 plays an important role in diamond resorption, whereas the T shows no relationship with the diamond grade, indicating the T plays no role in diamond resorption. The conditions of kimberlite crystallization (fO2) can be a useful parameter in evaluating diamond survival in diamond exploration.
DS202111-1794
2021
Zuo, R., Wang, J., Yin, B.Visualization and interpretation of geochemical exploration data using GIS and machine learning methods. *** Not specific to diamondApplied Geochemistry, Vol. 134, 105111, 10p. PdfGlobalgeochemistry

Abstract: Geochemical exploration has provided significant clues for mineral exploration and has helped discover many mineral deposits. Although various methods, including classic statistics, multivariate statistics, geostatistics, fractal/multifractal models, and machine learning algorithms, have been successfully employed to process geochemical exploration data, efficient interpretation and visualization of geochemical exploration data in support of the discovery of mineral deposits remain challenging. In this study, a workflow for intelligent interpretation and visualization of geochemical exploration data, defined as processing geochemical survey data with support of a geographical information system (GIS) and machine learning algorithms, was proposed. The effectiveness of the intelligent interpretation and visualization of geochemical exploration data supported by GIS and machine learning algorithms was demonstrated using a case study of processing a regional-scale geochemical survey dataset collected from Sichuan Province, China. Future research should add more advanced mathematical and statistical models, such as deep learning algorithms, into GIS to support the intelligent interpretation and visualization of geochemical exploration data.
DS202111-1795
2021
Zuo, R., Wang, J., Yin, B.The processing methods of geochemical exploration data: past, present, and future. *** not specific to diamondApplied Geochemistry, Vol. 132, 105072 9p. PdfGlobalreview

Abstract: Geochemical exploration data is popular in mineral exploration in that it plays a notable role in discovering unknown mineral deposits. In this study, we review the state-of-the-art popular methods for processing geochemical exploration data and for identifying geochemical anomalies associated with mineralization. The distribution laws of geochemical elements concentrations, including normal, log-normal, power-law, and multimodal and complex distributions, have been extensively studied over the past several decades. Accordingly, methods for processing geochemical exploration data have shifted from classic statistics, multivariate statistics, geostatistics, to fractal/multifractal models and machine learning algorithms. Geochemical exploration data, as compositional data, suffer from the closure problem. We need first to open them using logratio transformation. In the future, deep learning algorithms will become a popular technique for mining geochemical exploration data and for extracting targets associated with mineralization in mineral exploration.
 
 

You can return to the Top of this page


Copyright © 2024 Kaiser Research Online, All Rights Reserved